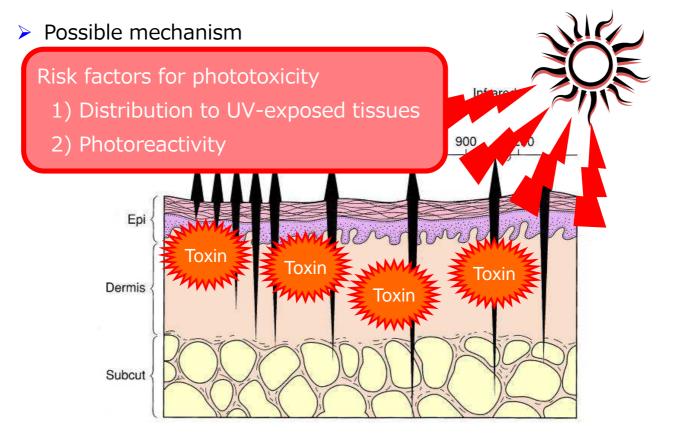
YAKUZAÎGAKU

Development of ROS Assay for Photosafety Evaluation

Satomi Onoue School of Pharmaceutical Sciences University of Shizuoka, Japan Phototoxicity webinar Oct. 4th, 2023


Scope of talks

- 1. Drug-induced phototoxicity
- 2. Reactive oxygen species (ROS) assay for photosafety testing
- 3. International harmonization on ROS assay
 - Multi-lab validation study
 - ➢ ICH S10 guideline (2014) and OECD TG495 (2019)
- 4. Photosafety testing
 - Combination use of ROS and PK data
- 5. Summary

- 1. Drug-induced phototoxicity
- 2. Reactive oxygen species (ROS) assay for photosafety testing
- 3. International harmonization on ROS assay
 - Multi-lab validation study
 - ➢ ICH S10 guideline (2014) and OECD TG495 (2019)
- 4. Photosafety testing
 - Combination use of ROS and PK data
- 5. Summary

UNIVERSITY OF SHIZUOKA

Chemical phototoxicity

Onoue et al., Curr Drug Saf, 4: 123 (2009); Onoue et al., High-Throughput Screening Methods in Toxicity Testing (John Wiley&Sons) 177 (2013)

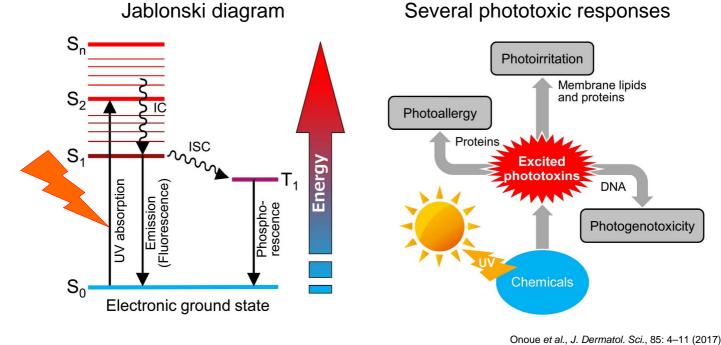
Laws of photochemistry

First law of photochemistry (Grotthus-Draper law)

 Only light that is absorbed can be active in photochemical processes.

 \checkmark Photobiological processes can be included here.

Second law of photochemistry (Einstein-Stark law)


 \checkmark A single photon can excite only one electron.

UNIVERSITY OF SHIZUOKA

ROS in phototoxic events

Working hypothesis;

"ROS may induce photochemical/toxic reactions"

🔶 UNIVERSITY OF SHIZUOKA

- 1. Drug-induced phototoxicity
- 2. Reactive oxygen species (ROS) assay for photosafety testing
- 3. International harmonization on ROS assay
 - Multi-lab validation study
 - ➢ ICH S10 guideline (2014) and OECD TG495 (2019)
- 4. Photosafety testing
 - Combination use of ROS and PK data
- 5. Summary

UNIVERSITY OF SHIZUOKA

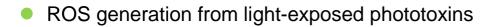
Determination of ROS

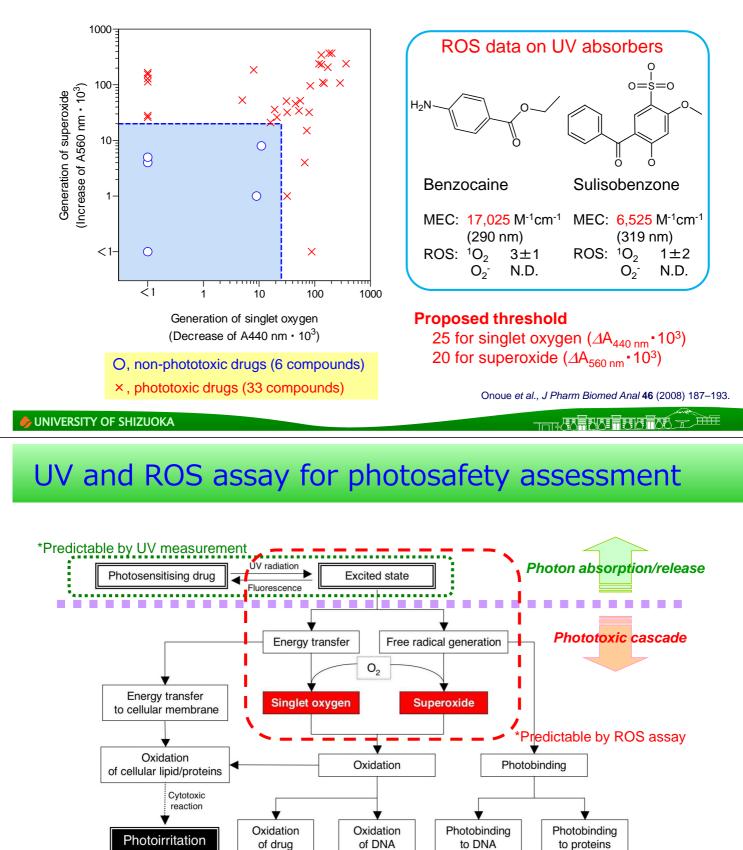
 Superoxide (O₂⁻) as indicator of type I photochemical reaction Reduction of Nitroblue tetrazolium (NBT)

 O_2^- + Nitroblue tetrazolium $\rightarrow O_2$ + Nitroblue diformazan ($\Delta A_{560 \text{ nm}}$)

Singlet oxygen (¹O₂) as indicator of type II photochemical reaction Bleaching of p-nitrosodimethylaniline (RNO)

 ${}^{1}\text{O}_{2} + \text{A} \rightarrow [\text{AO}_{2}] \rightarrow \text{AO}_{2}$


 $[AO_2] + RNO \rightarrow -RNO + Products (\Delta A_{440 nm} \downarrow)$


(A, ¹O₂ acceptor, imidazole; RNO: nitroso compounds)

*Recommended protocol is now available in JaCVAM web site. http://www.jacvam.jp/files/news/ROS_protocol_v3.1_130920_clean.pdf

Onoue et al., Pharm. Res., 23: 156 (2006); Onoue et al., Pharm. Res., 25: 861 (2008)

ROS assay on marketed drugs

DNA damage Mutagenic damage

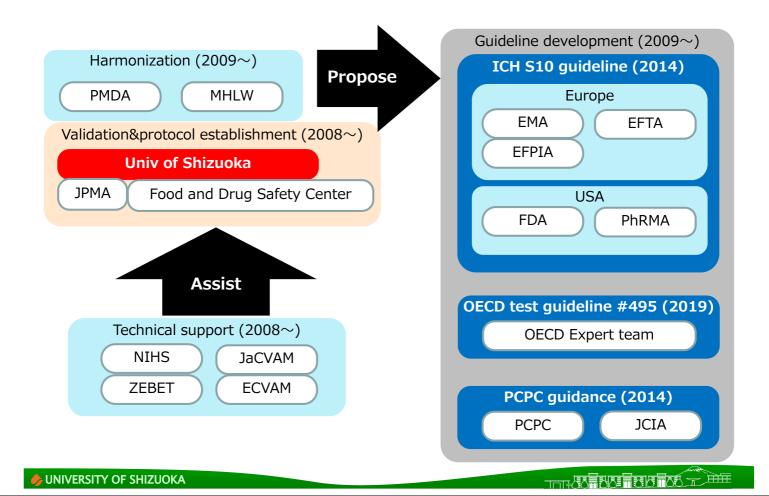
Photogenotoxicity

Degradation

Photoinstability

Immune

response


Photoallergy

UNIVERSITY OF SHIZUOKA

- 1. Drug-induced phototoxicity
- 2. Reactive oxygen species (ROS) assay for photosafety testing
- 3. International harmonization on ROS assay
 - Multi-lab validation study
 - ICH S10 guideline (2014) and OECD TG495 (2019)
- 4. Photosafety testing
 - Combination use of ROS and PK data
- 5. Summary

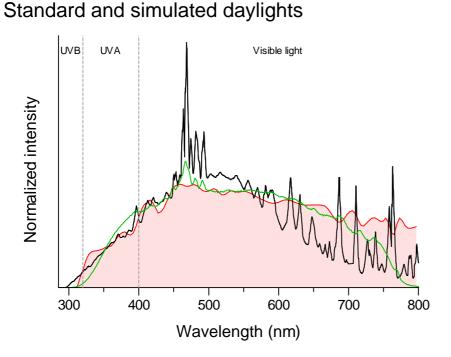
UNIVERSITY OF SHIZUOKA

International harmonization on ROS assay

Validation study (supervised by JaCVAM)

Study design

No. of labs	7 laboratories					
Test chemicals	Coded 42 compounds 200 µM (final concentration) When precipitation is found microscopically, assay at lower concentrations, 20 µM or 2 µM, was conducted.					
Controls	Qunine HCI (positive control) Sulisobenzone (negative control)					
Criteria	Calculation	¹ O ₂ : Decrease of $A_{440 \text{ nm}} \times 1000$ O ₂ ⁻ : Increase of $A_{560 \text{ nm}} \times 1000$				
	Positive	$^{1}O_{2} : \ge 25 \text{ and/or } O_{2}^{-} \ge 20 \text{ at } 2-200 \ \mu\text{M}$				
	Negative	$^{1}O_{2}$: <25 and O_{2}^{-} <20 at 200 μ M				


Recommended protocol in JaCVAM web site.

http://www.jacvam.jp/files/news/ROS_protocol_v3.1_130920_clean.pdf

Lab#4-7

UNIVERSITY OF SHIZUOKA

Solar simulators

Atlas Suntest CPS/CPS+ (ca. 2.0 mW/cm²): Lab#1-3

Lab#1–3: CPS/CPS+ (Atlas)

SXL-2500V2 (Seric)

Seric SXL-2500V2 (3.0–5.0 mW/cm²):

UNIVERSITY OF SHIZUOKA

Standard daylight (CIE85/1989)

Applicability and predictive capacity of ROS assay

	Suntest CPS series (Atlas)			SXL-2500V2 (Seric)			
	Lab#1	Lab#2	Lab#3	Lab#4	Lab#5	Lab#6	Lab#7
Evaluable chemicals (%)	78.6	73.8	81	81	81	71.4	76.2
Sensitivity (%)	100	100	100	100	100	100	100
Specificity (%)	81.8	60	41.7	53.8	46.2	60	63.6
Positive predictivity (%)	91.7	84	75.9	77.8	75	83.3	84
Negative predictivity (%)	100	100	100	100	100	100	100

S. Onoue et al., Toxicol In Vitro, 28: 515 (2013)

Section 4 Health effects

Test Guideline No. 495

for Photoreactivity

ICH S10 guideline &

ROS assay

"A negative result in this conditions, would indicate provided a test concentrati

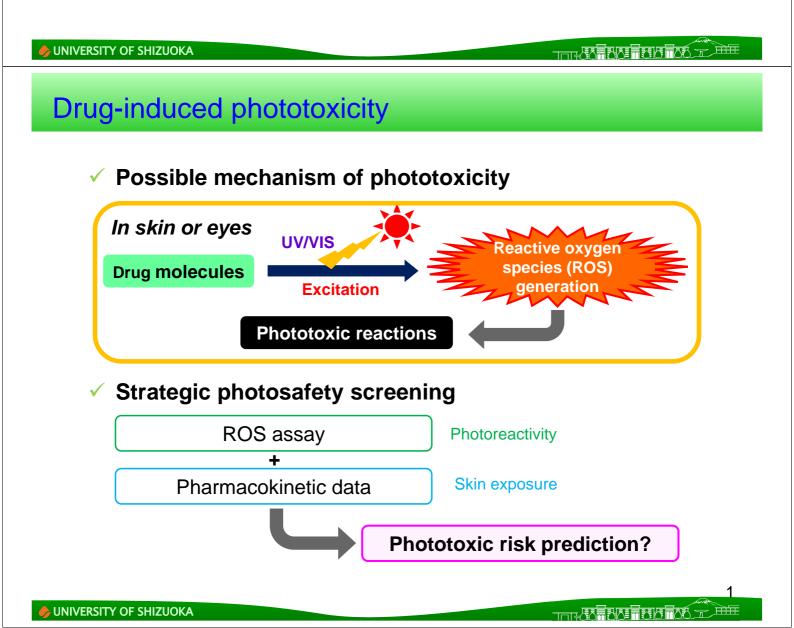
International conferenc

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE DRAFT CONSENSUS GUIDELINE

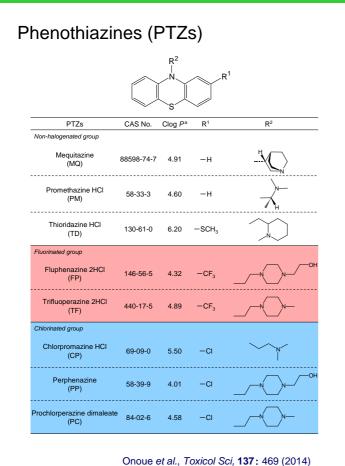
> PHOTOSAFETY EVALUATION OF PHARMACEUTICALS S10

> > Current Step 2 version dated 15 November 2012

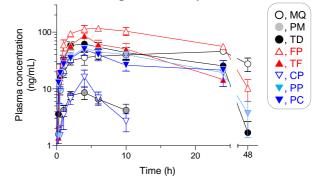
18 June 2019

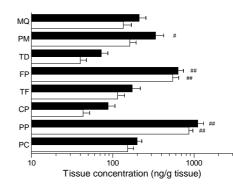

Reactive Oxygen Species (ROS) Assay

OECD Guidelines for the Testing of Chemicals


BETTER POLICIES FOR BETTER LIVES

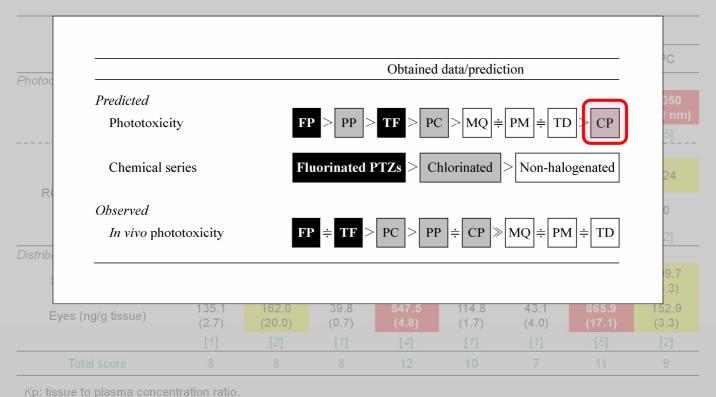
intersity of shizuoka


- 1. Drug-induced phototoxicity
- 2. Reactive oxygen species (ROS) assay for photosafety testing
- 3. International harmonization on ROS assay
 - Multi-lab validation study
 - ICH S10 guideline (2014) and OECD TG495 (2019)
- 4. Photosafety testing
 - Combination use of ROS and PK data
- 5. Summary


Combination use of ROS and PK data (1)

Cassette-dosing PK study

Plasma concentrations of PTZs in rats after oral cassette-dosing of 8 PTZs (5 mg/kg, each). Mean \pm SE (n=4).



Deposition in skin (filled bars) and eyes (open bars). #, P<0.05 and ##, P<0.01 with respect to TD.

UNIVERSITY OF SHIZUOKA

Combination use of ROS and PK data (2)

Decision matrix

Onoue et al., Toxicol Sci, 137: 469 (2014)

- 1. Drug-induced phototoxicity
- 2. Reactive oxygen species (ROS) assay for photosafety testing
- 3. International harmonization on ROS assay
 - Multi-lab validation study
 - ➢ ICH S10 guideline (2014) and OECD TG495 (2019)
- 4. Photosafety testing
 - Combination use of ROS and PK data

5. Summary

UNIVERSITY OF SHIZUOKA

Summary

- 1. Reactive oxygen species (ROS) assay was newly developed as *in chemico* photosafety testing tool.
- 2. The validation study indicates satisfactory outcomes in terms of transferability, intra- and inter-laboratory variability, and predictive capacity.
- 3. ROS assay was successfully adopted as ICH S10 guideline (2014) and OECD test guideline 495 (2019).
- 4. Combined use of ROS and PK data might enable evaluation of phototoxic risk with high clinical relevance.

Collaborators in Pfizer

Dr. Yoshiko Tsuda (Pfizer, Japan) Dr. Karen Alsante (Pfizer, US) Dr. Brian Henry (Pfizer, UK) Dr. Naoko Igarashi (Pfizer, Japan) Dr. Chris Foti (Pfizer, US) Dr. Graham Gandy (Pfizer, UK)

- Validation study

 JaCVAM/NIHS
 Validation management team
 Peer-review panel
 Dr. Manfred Liebsch (ZEBET)
 ICCVAM
 Dr. Dai Nakae
 Dr. Hiroshi Onodera (PMDA)
 Dr. Horst Spielmann (Freie Universität Berlin)
- University of Shizuoka
 Dr. Yoshiki Seto
 Mr. Gen Suzuki
 Mr. Hiroto Ohtake

UNIVERSITY OF SHIZUOKA

Mr. Masashi Kato Mr. Masanori Ochi Mr. Yosuke Iyama