Use of *In Vitro* Skin Irritation/ Corrosion Test Methods for Toxicity Assessment of Pesticides

Dr AB Pant Senior Principal Scientist

CSIR-Indian Institute of Toxicology Research, Lucknow (UP)

Ministry of Science & Technology, Government of India

Professor

Academy of Scientific and Innovative Research, Govt. of India Email: abpant@iitr.res.in, abpant@rediffmail.com

Application of IATA

OECD Series on Testing and Assessment

Guidance Document on the Integrated Approach on Testing and Assessment for **Skin Corrosion and Irritation**

Examination of existing data

Epidemiological/clinical data

Experimental data (animal*/in vitro/ex vivo/in chemico*)

Non-testing strategies (read across/ bridging from structurally/biologically related substances)

Where are data insufficient ?

Conduct testing using a non-animal sequential testing strategy (OECD TG 430, 431, 435, 439)

Bottom-up approach: start with skin irritation test **Top down approach:** start with skin corrosion test

Animal testing as last resort

Tiered Testing Strategies

Reconstructed Human Epidermis (RhE) Test Method

- **Test system:** RhE models: EpiDerm[™] (EPI-200); EpiSkin[™] (SM); SkinEthic[™] RHE; epiCS®; LabCyte EPI-MODEL24
- Assay endpoints: Percent cell tissue viability by MTT assay
- Assay control: Negative control (sterile PBS or Normal saline; Positive control (KOH or glacial acetic acid exposure for 4 h; 5% SDS)
- Applicability:To classify corrosive and non-corrosive test substancesSub-categorization, i.e., 1A Vs. 1B, and 1C Vs. non-corrosive

Regulatory Status: Validated and regulatory acceptance, OECD TG-431 (updated 2016)

RhE Test Protocol

- MTT assay for the percent cell viability assessment
- OECD TG 431 (*In vitro* skin corrosion) and OECD TG 439 (*In vitro* skin irritation)

For EpiSkin[™] (SM) model

Viability measured following exposure time (3, 60 and 240 min)	Prediction to be considered UN GHS Category					
< 35% after 3-min exposure	Corrosive: Optional Sub-category 1A					
 ≥ 35% after 3-min exposure AND < 35% after 60-min exposure OR ≥ 35% after 60-min exposure AND < 35% after 240-min exposure 	Corrosive: A combination of optional Sub- categories 1B and 1C					
≥ 35% after 240-min exposure	Non-corrosive					

Desprez B et al, Toxicology in Vitro, 29, 2055-2080 (2015)

Prediction model for- EpiDerm[™] (EPI-200), SkinEthic[™] RHE, epiCS[®]

Viability measured following exposure time (3- and 60-min)	Prediction to be considered UN GHS Category		
STEP	1		
< 50% after 3-min exposure	Corrosive		
≥ 50% after 3-min exposure AND	Corrosive		
< 15% after 60-min exposure			
≥ 50% after 3-min exposure AND	Non-corrosive		
≥ 15% after 60-min exposure			
STEP	2		
<25%; 18%; 15% after 3-min exposure	Optional Sub-category 1A		
>25%: 18%: 15% after 3-min exposure	A combination of optional Sub-		
	categories 1B- and-1C		

Desprez B et al, Toxicology in Vitro, 29, 2055-2080 (2015)

Test system:	RhE models: EpiDermTM (EPI-200); EpiSkinTM (SM); SkinEthicTM RHE; LabCyte EPI-MODEL24; EpiCS®; Skin+®
Assay endpoints:	Percent cell tissue viability by MTT assay
Assay control:	Negative control (sterile PBS or Normal saline; Positive control (1% SDS)
Applicability:	Determine skin irritancy of test substances either as a stand-alone replacement for <i>in vivo</i> skin irritation testing or as partial replacement test within a tiered testing strategy
Regulatory Status:	Validated and regulatory acceptance, OECD TG-439 (updated 2019)

In witro rocult	In when prodiction	Prediction to be considered		
<i>III VILIO</i> result	<i>In vivo</i> prediction	(GHS CATEGORY)		
Mean Tissue Viability ≤50%	Irritant (I)	Category 2		
Mean Tissue Viability > 50%	Non- irritant (NI)	No Category		

CASE-1: Subtoxic exposures may induce hormesis

Increased metabolism in response to cell damage-Incorrectly suggesting high viability

Solution:

- Selecting test chemical exposures which result in a full range of cytotoxic responses
- Using adenosine triphosphate (ATP) endpoint assay- Measures cellular ATP content rather than metabolic rate

Factors contributing to inaccurate MTT Assay

CASE-2: MTT interaction

Test chemical may directly reduce MTT causing an overestimation of tissue viability

Solution:

- > Assessment of direct MTT reduction
- > Testing of killed tissues in parallel

Assessment of direct MTT reduction

C : Test chemical 2: slight interaction

D: Test chemical 3: strong interaction

%Viability calculation when using killed control

A1= Test chemical A1

PC- Positive control

NC-Negative control

NKC- Negative killed control

KC-Killed control

% Viability PC= OD (PC)/OD (NC) x 100

Corrected killed control (CKC) = OD (KC) - OD (NKC)

% Viability CKC= OD (CKC)/ OD (NC) x 100

% Viability A= OD (A)/OD (NC) x 100

Corrected % Viability A = % Viability A - % Viability CKC

Mean Corrected % Viability A= (%CA1 +%CA2 + %CA3)/3

Calculate mean and SD for all groups

Killed Control (KC) Correction

Factors contributing to inaccurate MTT Assay

CASE-3: Coloration interference

- > Dyes and coloring test items able to stain tissues or interact with MTT
- Show interfere with viability assessment due to residual chemical color (unrelated to mitochondrial activity)

Solution:

- > Inclusion of 'Living-MTT' control
- > Inclusion of both "Living-MTT' and 'Killed-MTT' controls

- Living-MTT Control: Living tissues exposed to test item, and processed identical experimental conditions without MTT incubation (colored test items not interfering with MTT).
- Killed-MTT Controls: Killed tissues exposed to test item, and processed identical experimental conditions with and without MTT incubation (colored test items interfering with MTT).

% viability calculation for colorant not interfering with MTT

% Viability PC= OD (PC)/OD (NC) x 100

% Viability Living control (LC)=OD(LC)/OD(NC)x 100

% Viability A= OD (A)/OD (NC) x 100

Corrected % Viability A = % Viability A - % Viability LC

Mean Corrected % Viability A= (%CA1 +%CA2 + %CA3)/3

A1= Test chemical A1

PC- Positive control

NC-Negative control

LC-Living control without MTT incubation

Calculate mean and SD for all groups

% viability calculation for colorant interfering with MTT

A1= Test chemical A1

- **PC- Positive control**
- **NC- Negative control**

LC- Living control without MTT incubation KC'- Killed control without MTT incubation KC- Killed control with MTT

NKC- Negative killed control

% Viability PC= OD (PC)/OD (NC) x 100

% Living control (LC) = OD (LC)/ OD (NC)x 100

% Killed Control (KC) = OD (KC)/ OD (NC)x 100

Corrected Killed Control (CKC) = OD (KC)- OD (NKC)

% Corrected Killed Control (CKC) = OD (CKC)/ OD (NC)x 100

% Viability A= OD (A)/OD (NC) x 100

Corrected % Viability A = (% Viability A - % Viability LC) – (% Viability CKC) + (% Viability KC')

Mean Corrected % Viability A= (%CA1 +%CA2 + %CA3)/3

Inclusion of adapted control: Changes in final viability

Condition	% Mean viability	% Mean viability	% Mean viability	% Mean viability	in ty Final corrected		
	(%TS)	(% CKC)	(% LC)	(% KC)	viability	У	
	Living+MTT	Killed+MTT	Living-MTT	Killed-MTT			
1	80.9	-	-	-	%TS	80.9	
2	80.9	10.9	-	-	%TS - %CKC	70.0	
3	80.9	-	19.0	-	%TS -%LC	61.9	
4	80.9	10.9	19.0	5.0	%TS - % CKC - LC% + % KC	56.0	

% Mean viability of Test Sample (%TS)

- % Mean viability of Corrected killed control (% CKC)
- % Mean viability of Living control without MTT incubation (% LC)
- % Mean viability of Killed control without MTT incubation (% KC)

Effect of "Colour control" on percent viability

% viability correction

OD of	% viability of	% viability of
Negative	non-corrected	corrected
control	sample A	sample A
(d)	(a/d)*100	(c/d)*100
1.73	67.4	45.4

CASE-4: Adjusting values with valid controls

Test Item	Mean OD Value	Mean of viability (%)	SD of viability
NC	<mark>1.665</mark>	100.0	<mark>18.5</mark>
PC	0.363	<mark>21.8</mark>	3.3
A	0.910	<mark>54.6</mark>	37.1
В	0.850	<mark>51.0</mark>	6.5

Test Item	Mean OD Value	Mean of viability (%)	SD of viability
NC	<mark>2.023</mark>	100.0	<mark>3.2</mark>
PC	0.363	<mark>17.9</mark>	2.7
А	0.910	0.910 <mark>44.9</mark> 2	
В	0.833	<mark>41.2</mark> 5.8	

NC- Negative control; PC-Positive control

CASE 5: Variations in test item exposure

A	Viscous liquid, residual test item remains after rinsing	Residual test item may have increased toxicity (Irritant?)
B	Non-viscous liquid, tissue of one replicate was damaged while removing mesh	Damage tissue could have resulted in high SD (Non-Irritant?)
С	Solid white powder, completely removed from tissues	Clear irritant/corrosive (Irritant?)

Test item	Mean OD Value	SD of viability	
NC	2.020	100.0	2.9
PC	0.410	20.3	2.2
А	0.869	43.0	1.9
В	1.250	61.9	19.9
С	0.315	15.6	1.7

CASE-6: Analyzing conflicting results

Test item	Tissue	OD Value	%Viability	Test	Mean	Mean of	SD of
	1	0.890	<mark>44.0</mark>	item	OD	viability (%)	viability
A	2	1.120	55.4	NC	2.022	100.0	3.6
	3	0.942	<mark>46.6</mark>	PC	0.349	17.3	2.4
В	1	1.059	52.4	A	1.008	49.8	5.9
	2	0.799	<mark>39.5</mark>	B	0.957	47.3	7.0
	3	1.030	50.9	C	0.512	25.3	19.3
	1	0.410	<mark>20.3</mark>	<u> </u>	507	•	•
С	2	0.859	<mark>42.5</mark>	o n tro			
	3	0.081	<mark>4.0</mark>	່ວ 1 0	• • + <u> </u>		

- Individual tissue values (A and B) showing different irritation rankings
- High standard deviation for test article C

Tissue loss observed for test item-A at 60 min and for test item-B at 3 min

Perspectives, challenges and togetherness

Linking of cellular and molecular events to the events of regulatory interest

Sources: Environmental Containments	Exposure	Molecular initiating events Toxici	Organelle and cellular level effects ty Pathway of Action	Tissue effects	Organ effects	Organ systems effects	Individual effects	Population effects	Community effects
i.		Adver	se Outcome	Pathway					
		Sourc	e to Outcome	e Pathway					

High-throughput assays

2D cultures: cell lines/primary cells/ stem cells/ iPSCs

3D reconstructed tissues/ Organoids/ Organ on Chip

Computational Modeling

abpant@iitr.res.in, abpant@rediffmail.com

- **Sample B- Non- corrosive**
- Sample A- Corrosive; Consider optional sub-categorization for Sample A

Applying Optional Subcategories

Test Item	Exposure Time	OD Value	Viability	Sub- Category
Positive Control	3	0.453	33.1	
	60	0.214	15.6	1B/1C
Α	3	0.889	65.0	1B/1C
	60	0.121	8.8	

Viability of 3 minute exposure <25% = Subcategory 1A</p>

➤ Viability of 3 minute exposure ≥25% = Subcategory 1B/1C

For colored test chemicals- Simply include adapted control/controls

For uncolored test chemicals- Possible interference should be first checked

- A: Control
- B: Test chemical 1: no color
- C: Slight coloration of a red Test chemical
- **D:** Strong coloration of a red Test chemical