

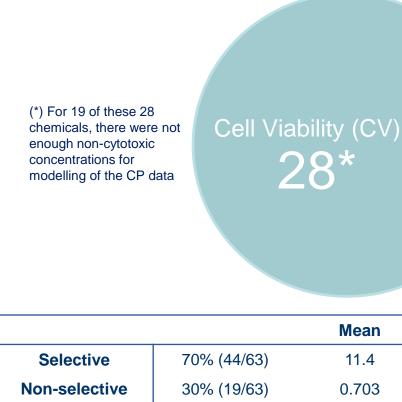
WWW.EPA.GOV

Background

- Numerous environmental chemicals lack data on potential developmental neurotoxicity (DNT) hazard.
- As such, reliable and efficient new approach methods (NAMs) are needed to fill this critical data gap.
- For this purpose, our laboratory adapted a previously established highthroughput phenotypic profiling (HTPP) NAM for use with proliferating hNP1 human neural progenitor cells Culbreth et al., 2022 (https://doi.org/10.3389/ftox.2021.803987)
- HTPP integrates cell viability (CV) and cell painting (CP) assay data to determine a benchmark concentration (BMC) for chemical effects.
- Presently, 282 DNT-relevant compounds have been evaluated in the hNP1 HTPP approach to determine whether this NAM can identify potential DNT hazard.
- These compounds include some with evidence for DNT in humans and in vivo (reference "positives"), as well as some with no evidence for DNT (reference "negatives").

Experimental Design

evaluate cytotoxicity. Cells were then fixed and imaged with a 10X air objective. For the CP assay, cells were live-labelled with MitoTracker, fixed, permeabilized, fluorescently-labelled, and imaged with a 20X water immersion objective. Representative images are of untreated cells from the CP assay. Abbreviations: Concanavalin-Alexa Fluor™ 488 (Alexa 488); Alexa Fluor™ 568 Phalloidin (Alexa 568); Wheat Germ Agglutinin-Alexa Fluor™ 555 (Alexa 555); actin cytoskeleton, Golgi Apparatus, plasma membrane (AGP). Scale bar = $20 \,\mu m$


 $\bigcirc \rightarrow$ Segment cells \rightarrow Profile cellular compartments

Data normalization & visualization

High-throughput phenotypic profiling approach for the screening and prioritization of potential developmental neurotoxicity hazard

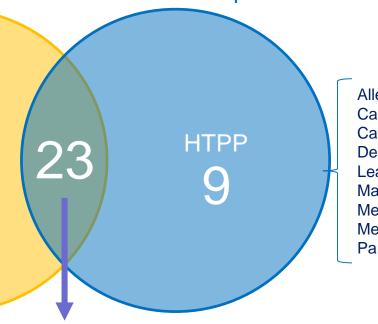
¹CCTE, ORD, US EPA, Durham, NC, USA; ²Present address: PETA Science Consortium International, e.V., Stuttgart, Germany; ³ORAU, Oak Ridge, TN, USA

151 of 282 compounds evaluated were active in the human neural progenitor cell HTPP approach 91 active compounds 123 active compounds Cell Painting (CP) ll Viability (CV) 63 2860 Mediar SD Min Max Mea 360 Selective 70% (44/63) 11.4 1.82 53.9 1.01 30% (19/63) 0.703 0.701 0.171 0.416 0.989

Selective: CP BMC < CV BMC; Non-selective: CP BMC > CV BMC; Mean, Median, SD, Min, & Max of the ratio of CV BMC/CP BMC previations: standard deviation (SD), minimum (Min), maximum (Max) Human neural progenitor cell HTPP identified 35 of the 57 DNT reference positive¹ compounds screened

24 active compounds


Azacytidine Allethrin Chlorpyrifos Colchicine* Cytarabine hydrochlor Tributyltin chloride* Tributyltin methacryla (*) Not enough non- cytotoxic concentrations for modelling of the CP data	ride*	oility (CV)	17 ^{Cel}	II Painting (11	CP) - 5-Fluor Caffein Deltam Halope Hydrox	e ethrin ridol yurea I) acetate trihydra rexate at on
		Mean	Median	SD	Min	Мах
Selective	71% (12/17)	5.13	2.32	7.23	1.01	26.2
Non-selective	29% (5/17)	0.714	0.747	0.188	0.480	0.956
Abbreviations: standard deviat	; Non-selective: CP BMC > CV E ion (SD), minimum (Min), maxim reference pc <u>ToxCast</u>	ositive ¹ cor		creened in		DNT


5,5-Diphenylhydantoin Bisphenol A Diazinon Sodium valproate Triamcinolone Trichlorfon

U.S. Environmental Protection Agency Office of Research and Development

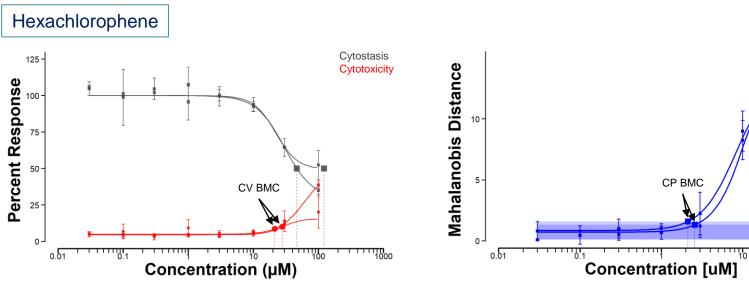
Megan Culbreth^{1,2}, Gabrielle Byrd^{1,3}, Felix Harris^{1,3}, Clinton Willis¹, Tim Shafer¹,Kelly Carstens¹, Joshua A. Harrill¹

28 active compounds

Allethrin Cadmium chloride Caffeine Deltamethrin Lead(II) acetate trihydrate Maneb Methotrexate Methyl parathion Parathion

3 of the 35 DNT reference negative⁴ compounds were HTPP false-positives

		HTPP B	MC (μM)	hNP1 D	DNT ToxCast AC ₅₀ (μM)²	
Chemical Name	DTXSID	CVa	СРь	Viability	Proliferation	Apoptosis
Acetaminophen	DTXSID2020006	-	-	NT	-	-
Amoxicillin	DTXSID3037044	-	-	NT	-	-
Ampicillin	DTXSID4022602	-	-	-	-	-
Anthracene	DTXSID0023878	-	-	-	-	-
Aspirin	DTXSID5020108	-	-	-	-	-
Buspirone	DTXSID2022707	-	80.9	-	-	-
Captopril	DTXSID1037197	-	-	-	-	-
Chloramben	DTXSID2020262	-	-	-	-	-
hlorpheniramine maleate	DTXSID4020321	-	-	-	-	-
Cotinine	DTXSID1047576	-	-	-	-	-
D-Glucitol	DTXSID5023588	-	-	NT	-	-
Diethylene glycol	DTXSID8020462	-	-	-	-	-
Dinotefuran	DTXSID7034549	-	-	-	-	-
D-Mannitol	DTXSID1023235	-	-	-	-	-
Doxylamine succinate	DTXSID7020552	-	-	-	-	-
Erythromycin	DTXSID4022991	-	-	-	-	-
Famotidine	DTXSID5023039	-	-	-	-	-
Fluconazole	DTXSID3020627	-	-	-	-	-
Folic acid	DTXSID0022519	-	-	NT	NT	NT
Galactosamine	DTXSID4031356	-	-	-	-	-
hydrochloride Glycerol	DTXSID9020663	-	-	-	-	-
Ibuprofen	DTXSID5020732	-	-	-	-	-
Isoniazid	DTXSID8020755	_	-	_	-	-
L-Ascorbic acid	DTXSID5020106	_	45.5	_	<u>.</u>	_
Metformin	DTXSID2023270	-	-	-	-	-
Metoprolol	DTXSID2023309	_	-	5.41	-	-
Mifepristone	DTXSID5023322	_	19.9	12.4	16.6	20.3
Penicillin VK	DTXSID7021102	_	-	_	-	-
Phenol	DTXSID5021124	_	_	_	_	_
Selegiline hydrochloride	DTXSID9044584		_	_		_
Sodium benzoate	DTXSID9044584	-		-	_	_
		-		- NT	-	_
odium saccharin hydrate	DTXSID7021992	-	-	INT	-	-
Sulfisoxazole	DTXSID6021292	-	-	-		-
Tetracycline	DTXSID7023645	-	-	-	-	-
Warfarin	DTXSID5023742	-	-	-	-	-


*v*iations: DSSTox substance identifier (DTXSID), micromolar (μM), activity concentration at 50% of the maximal activity (AC₅₀), not active (-), not tested or not reported in ToxCast (NT), benchmark response (BMR), 50% maximal effective concentration (EC₅₀), normalized median absolute deviation (nMAD)

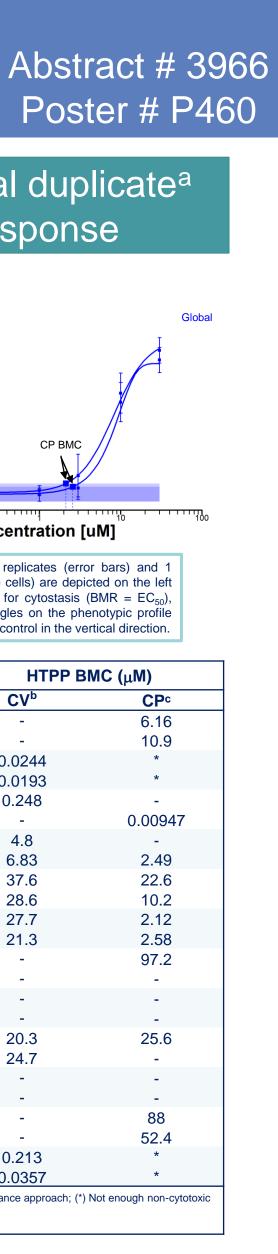
References: ¹Mundy et al., 2015 (<u>https://doi.org/10.1016/j.ntt.2015.10.001</u>); ²invitrodb version 3.5 database (https://doi.org/10.23645/epacomptox.6062623.v8), ToxCast pipeline (tcpl) R package (version 2.1.0) (https://cran.rproject.org/web/packages/tcpl/index.html); ³Harrill et al., 2018 (<u>https://doi.org/10.1016/j.taap.2018.04.001</u>) ⁴Martin et al., 2022 (https://doi.org/10.1016/j.ntt.2022.107117)

HTPP BMC < ToxCast AC_{50} : 15 of 23 compounds

Megan Culbreth | MeganC@thepsci.eu Joshua Harrill | harrill.joshua@epa.gov

12 compounds screened in technical duplicate^a elicited a reproducible HTPP response

Hexachlorophene HTPP. Each concentration-response curve represents data from 3 biological replicates (error bars) and 1 technical replicate/biological replicate. Cytostasis (normalized cell count) and cytotoxicity (PI-positive cells) are depicted on the left and phenotypic profile (global Mahalanobis distance) on the right. Enlarged shapes are the BMC for cytostasis (BMR = EC₅₀). cytotoxicity (BMR = 3*nMAD), and phenotypic profiling (BMR = 1*nMAD), respectively. The rectangles on the phenotypic profile graph illustrate the concentration range tested in the horizontal direction and ± 1 *nMAD of the vehicle control in the vertical direction.


			ΗΤΡΡ ΒΜϹ (μ	
Chemical Name	DTXSID	Туре	CV ^b	
5-Fluorouracil	DTXSID2020634	DNT Reference positive ¹	-	
Colchicine	DTXSID5024845	DNT Reference positive ¹	0.0244 0.0193	
Cytarabine	DTXSID3022877	DNT Reference positive ¹	0.248	(
Di(2-ethylhexyl) phthalate	DTXSID5020607	DNT Reference positive ¹	4.8 6.83	
Dieldrin	DTXSID9020453	DNT Reference positive ¹	37.6 28.6	
Hexachlorophene	DTXSID6020690	DNT Reference positive ¹	27.7 21.3	
Hydroxyurea	DTXSID6025438	DNT Reference positive ¹	-	
Methamidophos	DTXSID6024177	OP-pesticide	-	
Naled	DTXSID1024209	OP-pesticide	20.3 24.7	
Phenol	DTXSID5021124	DNT Reference negative ²	-	
Tebuconazole	DTXSID9032113	DNT Reference positive ¹		
Tributyltin methacrylate	DTXSID9035204	DNT Reference positive ¹	0.213 0.0357	

Conclusions

- hNP1 HTPP is an efficient NAM for the prioritization of potential DNT hazard.
- This approach can identify both known DNT reference positive and negative compounds.
- DNT reference positive and negative compounds are detected at a similar rate to previously established hNP1 DNT ToxCast assays; however, hNP1 HTPP is higher throughput and more cost effective
- Future analyses will examine potential similarities in phenotypic profiles within compound groups (e.g., organophosphates)

Acknowledgments and Funding

The U.S. EPA through its Office of Research and Development (ORD) provided funding for this research. The views expressed on this poster, however, are those of the authors and do not necessarily reflect U.S. EPA policies. Reference to commercial products does not constitute endorsement.

