Novel Human-Relevant Preclinical Safety Testing Strategy for Recombinant Human Monoclonal Antibodies Directed Against Foreign Targets April Naab¹, Jeffrey Brown¹, Esther Wenzel², Stefan Dübel², Paul Stickings³, Michael Hust²

¹PETA Science Consortium International e.V. ²Technische Universität Braunschweig ³National Institute for Biological Standards and Control

Corresponding Author: April Naab, apriln@thepsci.eu

PURPOSE

International Council of Harmonization (ICH) guidance¹ recommends a significant reduction in animal-based testing for a therapeutic monoclonal antibody (mAb) directed against a foreign antigen when evaluating preclinical safety. This drug class-specific testing approach is in line with legislation² and policy³ guiding regulatory agencies to prioritize modern testing approaches that safeguard human health while replacing animal-based experiments, but at present it is unclear how regulatory agencies will respond to data from an exclusively non-animal approach.

We propose a non-animal preclinical safety testing strategy that supports a single-dose, first-in-human (FIH) clinical study for a well-characterized human recombinant monoclonal antibody directed against a foreign antigen, and we present a case study therapeutic antitoxin to be discussed with regulators.

METHODS

A detailed assessment of the potential toxicity risks specific to the target drug class was performed using ICH guidance and the growing body of data from pharmaceutical mAbs. As shown in Table 1, the safety profile for a purified human recombinant mAb therapeutic directed against a foreign antigen indicates low risk to humans, and the non-animal safety testing strategy was developed to fully mitigate the two "low" risks.

Table 1. Potential human toxicity risks specific to the target drug class

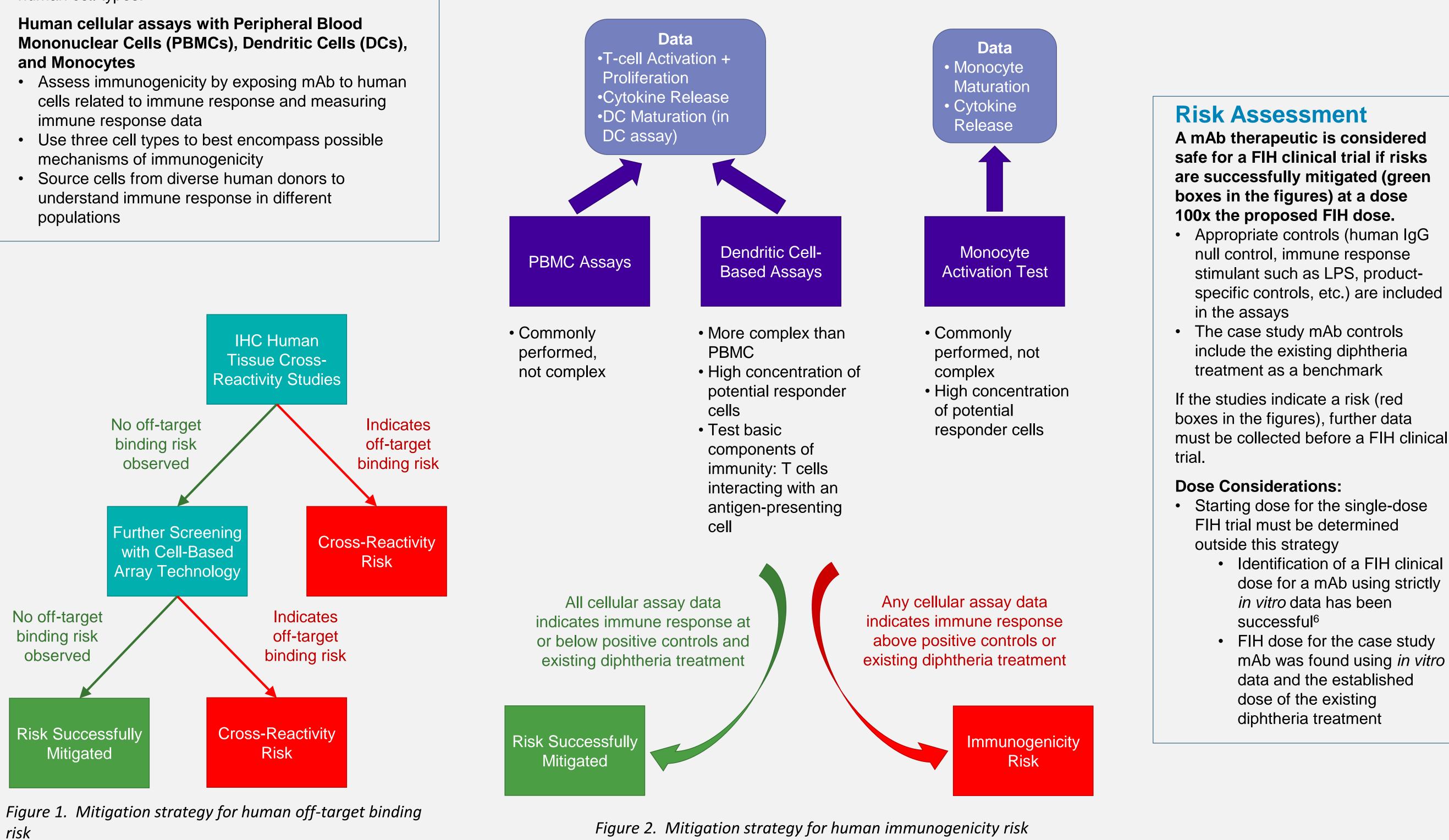
target arag class			
Potential Risk	Degree of Risk for Target Drug Class	Rationale	
Excessive on- target activity (exaggerated pharmacology)	Negligible	 Drug within the target class has high specificity / affinity for an antigen foreign to humans 	
Off-target binding	Low (to be fully mitigated by preclinical strategy)	 Low risk for antibody with high specificity / affinity for non- human target 	
Genotoxicity, Carcinogenicity, Reproductive Toxicity	Negligible	 Testing for these is not recommended by ICH S6(R1) for the target drug class¹ 	
Toxic metabolite or reactive intermediate	Negligible	 Metabolism of therapeutic proteins is well-understood and gives no safety risk¹ 	
Immunogenicity	Low (to be fully mitigated by preclinical strategy)	 Unwanted human immune response is unlikely for a fully human antibody with a non-human target 	

RESULTS

Attributes of the Target Drug Class

The case study therapeutic antitoxin is a candidate treatment for diphtheria consisting of two human recombinant mAbs⁴. Table 2 details this product and shows the type of well-characterized, purified, and highly specific product to which the non-animal strategy may be applied.

(Figure 1)


Immunohistochemical (IHC) Study Screen for mAb binding to a standard panel of human tissues Recommended by ICH guidance¹

Cell-Based Array Technology Screen for mAb binding to thousands of human proteins in a native environment Cover a high percentage of the human proteome

(Figure 2)

Animal data is not predictive of human immunogenicity⁵, so the preclinical strategy includes a battery of well-established in vitro assays using different human cell types:

- populations

Risk to Mitigate: Off-Target Binding

Risk to Mitigate: Immunogenicity

Table 2. Attributes of the preclinical testing strategy target drug class along with the characteristics of the case study therapeutic

Tuble 2. Allibut						, , , , , , , , , , , , , , , , , , ,	
Product	Sequence Source	Antibody Type	Sequence -Defined	Target	Specificity Data	Affinity Data	Purity Data
Preclinical Strategy Target Drug	Fully Human	Recombinant Monoclonal	Yes	Antigen foreign to humans	 Characterization data proving mAb is highly specific for intended antigen 	 Data proving that mAb binds strongly to intended antigen and is therefore unlikely to bind other sites 	 Data showing the absence impurities that may cause human health or safety risk
New Therapy for Diphtheria (Combination of 2 mAbs) ⁴	Fully Human: selected through phage display using a human immune antibody library	Recombinant Monoclonal: IgG1 format	Yes	Diphtheria Toxin (exotoxin responsible for diphtheria morbidity and mortality)	 Minimal Epitope Regions Defined Domain Mapping Performed: Antibody 1 binds to Receptor Binding Domain of toxin Antibody 2 binds to Catalytic Domain of toxin 	 Toxin Binding with Titration Elisa: Antibody 1 EC50^a = 0.027 µg/mL Antibody 2 EC50 = 0.022 µg/mL Toxin Affinity with Microscale Thermophoresis: Antibody 1 EC50 = 13 nM Antibody 2 EC50 = 14 nM <i>in vitro</i> Neutralization Potency: Combined Antibodies = 160 IU/mg 	• To be gather

^aEC50 = Half Maximal Effective Concentration

CONCLUSIONS A non-animal preclinical safety testing strategy was developed to address the toxicity risks of a well-characterized human recombinant mAb therapeutic directed against a foreign antigen • The strategy supports a single-dose FIH clinical trial • Risks specific to the target drug class are best understood using well-developed human cell and tissue assays • The preclinical strategy as it applies to a case study mAb therapeutic product is proceeding through formal discussions with the FDA and **EMA** FDA Pre-IND meeting outcomes: Agency is supportive of proposal and does not require additional in vivo efficacy testing before reviewing data from the non-animal package EMA early-phase Scientific Advice meeting: pending • The regulatory requirement to evaluate new drug candidates using animal-based safety studies prior to a FIH trial may not be necessary given currently-available in vitro methods and regulatory guidance³ that recognize the value of integrating modern science into the review process REFERENCES ¹International Council for Harmonization. *Preclinical Safety* Evaluation of Biotechnology-Derived Pharmaceuticals *S6(R1)*.; 2011. ²European Parliament, Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes.; 2010. ³U.S. Food and Drug Administration. *Predictive Toxicology Roadmap*.; 2017. ⁴Wenzel EV, Bosnak M, Tierney R, et al. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Scientific Reports. 2020;10(571):1-21. ⁵Walsh RE, Lannan M, Wen Y, et al. Post-hoc assessment of the immunogenicity of three antibodies reveals distinct immune stimulatory mechanisms. *mAbs*. 2020;12(00). ⁶Dudal S, Hinton H, Giusti AM, et al. Application of a MABEL Approach for a T-Cell-Bispecific Monoclonal Antibody: CEA TCB. Journal of Immunotherapy.

2016;39(7):279-289.

INTERNATIONAL e.V.

PETA SCIENCE CONSORTIUM