'l'he United States Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility Tool: **Extrapolating Knowledge Computationally** Presenter: Carlie A. LaLone, Ph.D. May 11th 2022 **Office of Research and Development**

Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the US EPA

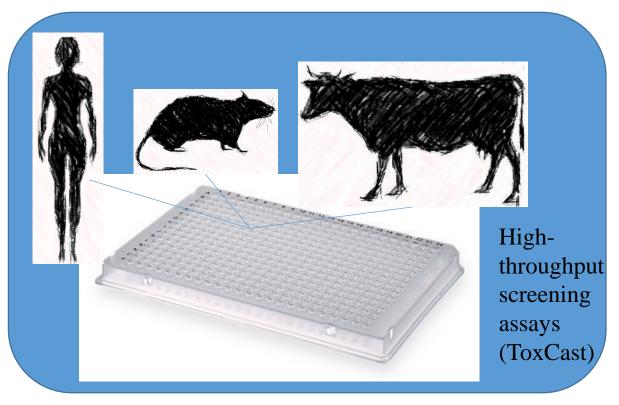
Overview

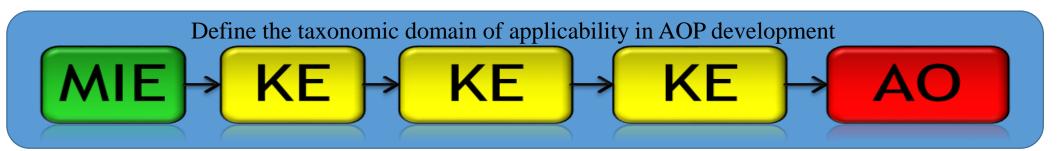
- Need for cross species extrapolation
- Bioinformatics to advance extrapolation
- The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool
- Demonstrated applications
- Bringing champions in the field together to advance the science for action through an international consortium

Toxicity Testing to Understand Chemical Safety

• US EPA Examples:

- Clean Air Act
- Clean Water Act
- Resource Recovery Act
- Endangered Species Act
- Food Quality Protection Act
- Endocrine Disruptor Screening Program
- Federal Insecticide, Fungicide, and Rodenticide Act
- Frank R. Lautenberg Chemical Safety for the 21st Century Act
- Comprehensive Environmental Response, Compensation, and Liability Act
- Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses


Need for Advances in Species Extrapolation



High throughput transcriptomics

Historic whole organism toxicity testing

Use of model organisms as surrogates representing the diversity of species in the environment

cheap and readily available

easy maintenance and good breeding capabilities

ability to control diet and surroundings

requires least space and time-consuming care

Species Extrapolation

What is it?

- Using existing knowledge about one species to estimate, predict, project, or infer the effect, impact, or trajectory of another species
 - For chemical safety typically dealing with toxicity

Why is it important:

- Limited or no toxicological data for the animal or plant species of interest reliance on surrogate (model organisms)
 - Impractical to generate new data for all species
- Testing resources are limited
 - International interest to reduce animal use
 - Ever-increasing demand to evaluate more chemicals in a timely and sometimes expedited manner
- Sensitivity of species must be estimated based on scientifically-sound methods of cross-species extrapolation
 - Immense diversity of species in the wild
 - Important challenge for species listed under the Endangered Species Act

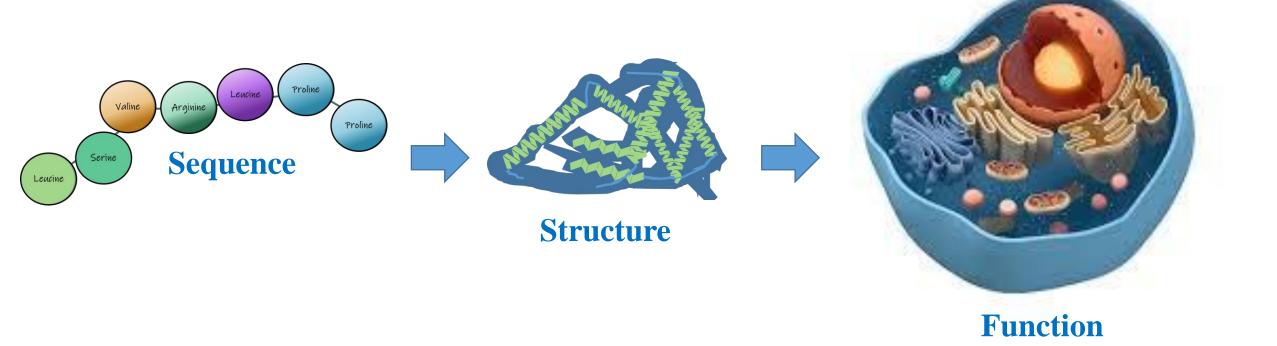
Where could we begin in understanding species similarities and differences?

Look for existing, expanding data that does not require the destruction of live organisms

Sequence and structural data: New tools and technologies have emerged

- Improved sequencing technologies
- Large databases of sequence data

NCBI: <u>224,211,842 Proteins</u> representing <u>117,030 Organisms</u>


Bioinformatics

- Combines mathematics, information science, and biology to <u>answer</u> <u>biological questions</u>
- Developing methodology and analysis tools to <u>explore large volumes</u> of biological data
 - Query, extract, store, organize, systematize, annotate, visualize, mine, and interpret complex data
 - Usually pertains to DNA and amino acid sequences

Let the computers do the work

Begin Simple and Advance as the Science Advances

Consider sequence and structural attributes to understand protein conservation across species

TOXICOLOGICAL SCIENCES, 153(2), 2016, 228-245

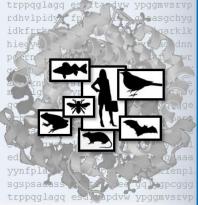
doi: 10.1093/toxsci/kfw119 Advance Access Publication Date: June 30, 2016 Research article

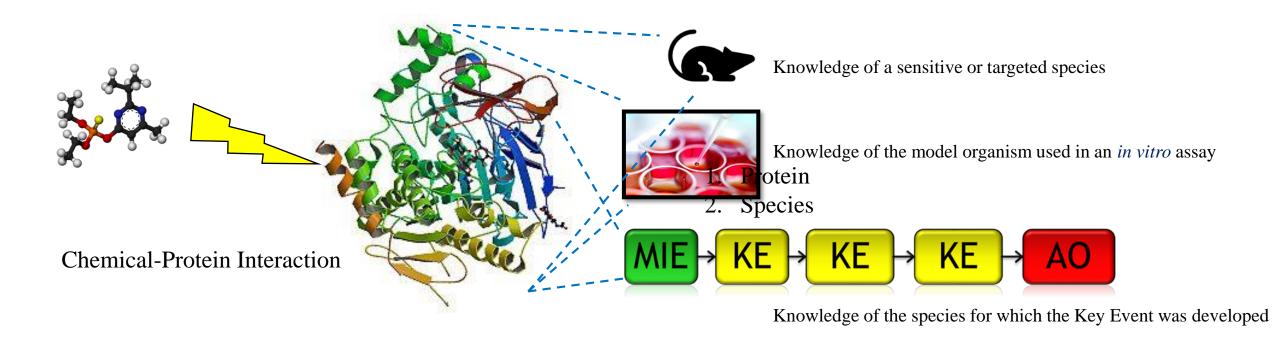
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

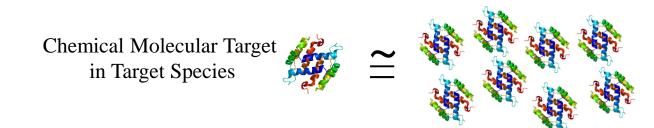
Carlie A. LaLone,^{*,1} Daniel L. Villeneuve,^{*} David Lyons,[†] Henry W. Helgen,[‡] Serina L. Robinson,^{§,2} Joseph A. Swintek,[¶] Travis W. Saari,^{*} and Gerald T. Ankley^{*}

<u>Sequence Alignment to</u> <u>Predict Across Species</u>

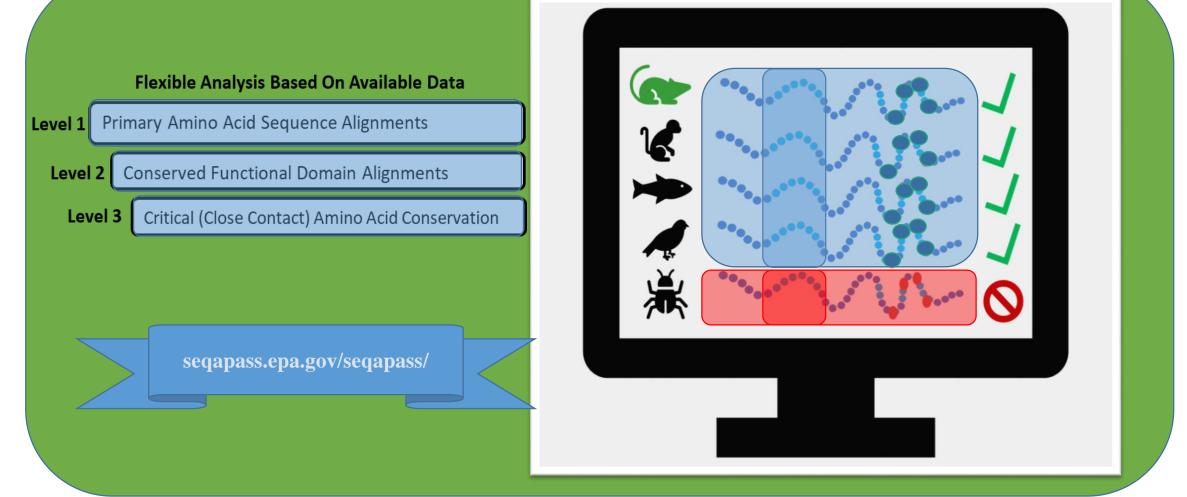
https://seqapass.epa.gov/seqapass/


<u>Susceptibility</u> (SeqAPASS)

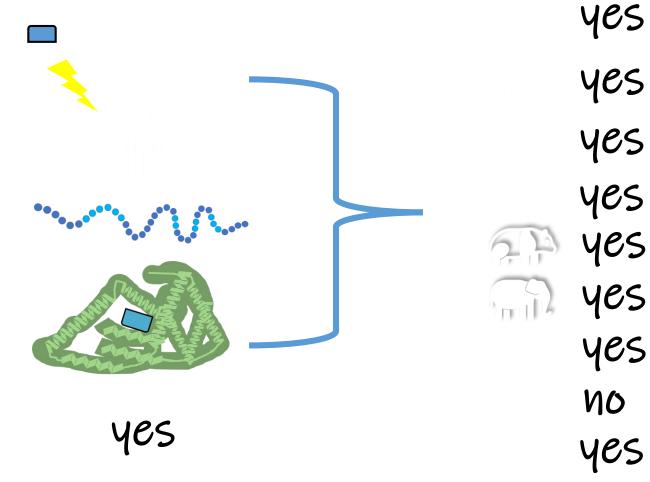




What information is required for a SeqAPASS query?



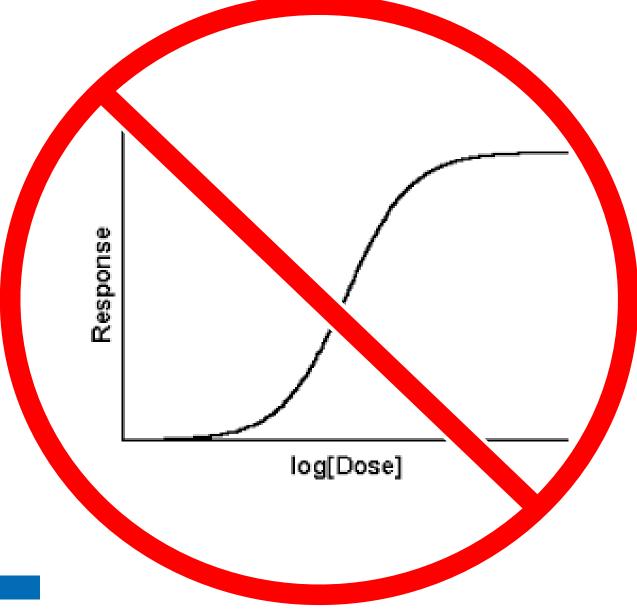
Compare to <u>Millions</u> of Proteins From <u>Thousands</u> of Species


Greater similarity = Greater likelihood that <u>chemical can act on the protein</u> <u>Line of Evidence</u>: Predict Potential Chemical Susceptibility Across Species

Gather Lines of Evidence Toward Protein Conservation

SeqAPASS Predicts Likelihood of Similar Susceptibility based on Sequence Conservation:

S S Line(s S Th


NO

Line(s) of evidence indicate

- The protein is conserved
- The protein is NOT conserved

SeqAPASS DOES NOT predict the degree of sensitivity/susceptibility:

Factors that make a species sensitive

- Exposure
- Dose
- ADME
- Target receptor availability
- Life stage
- Life history
- etc.
- etc.

Strengths of SeqAPASS

- **Publicly available** to all
- Lines of evidence for conservation for <u>100s-1000s of</u> <u>species</u> rapidly
- Takes advantage of **well-established tools and databases**
- Streamlined, consistent, transparent, and published methods
 - <u>Case examples</u> to demonstrate applications
- <u>Guides users</u> to appropriate input
- **Evolves** as bioinformatics approaches become more user friendly
 - Smart automation or semi-automation

Application of SeqAPASS

KE KE KE MIE → AO

MON TUE WED THU SAT SUN MON

SUN

SeqAPASS for the butterflies

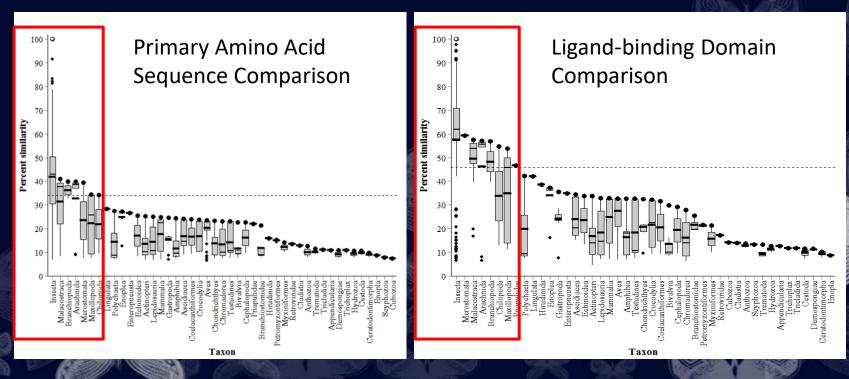
Evaluation to Predict Chemical Susceptibility to Threatened/Endangered Species

Order: Lepidoptera

Molt-accelerating Insecticides

- Methoxyfenozide and Tebufenozide
 - Molecular target ecdysteroid receptor (EcR)
 - Target species: pest insects from Lepidopteran order
 - Armyworm, budworm, moth, corn borer
 - Low toxicity to non-target organism
 - Vertebrates, honey bees, earthworms

What about beneficial Lepidopterans?


FFKRSIQGHNDY+CPATNQCTID+NRRKSCQACRLRKCYEVGMMKGGIRKDR GGR ++

Threatened or Endangered

SeqAPASS Results

- Level 1
 - Ecdysone receptor is well conserved across invertebrates
- Level 2
 - Conservation of the ligand binding domain across Insect, Merostomata, Malacostraca, Arachnida, Branchiopoda, Maxillopoda, Priapulidae

SeqAPASS Level 3

Insect Classification	Scientific Name	Common Name	Order	Protein Name	^b Q331	P353	°M360	^a V402	^b V434	^b Q521	^b M525	°I527	°K532	^b L536
		. 1 1 1	x • 1			P								
Pest	Heliothis virescens	tobacco budworm	Lepidoptera	Ecdysone receptor	Q	P	М	V	v	Q	М	Ι	Κ	L
Pest	Helicoverpa armigera	cotton bollworm	Lepidoptera	ecdysone receptor	Q	P	М	V	V	Q	М	Ι	K	L
Pest	Agrotis ipsilon	black cutworm moth	Lepidoptera	EcR B-like protein	Q	Р	М	V	V	Q	М	Ι	K	L
Pest	Spodoptera littoralis	African cotton leafworm	Lepidoptera	ecdysone receptor	Q	Р	М	V	v	Q	М	Ι	K	L
Pest	Spodoptera exigua	beet armyworm	Lepidoptera	ecdysone receptor	Q	Р	М	V	V	Q	М	Ι	K	L
Pest	Spodoptera litura	moths	Lepidoptera	ecdysone receptor	Q	Р	М	V	V	Q	М	Ι	K	L
Pest	Amyelois transitella	moths	Lepidoptera	PREDICTED: ecdysone receptor isoform X1	Q	Р	М	V	V	Q	М	Ι	Κ	L
Pest	Scirpophaga incertulas	moths	Lepidoptera	ecdysone receptor	Q	Р	М	V	V	Q	М	Ι	Κ	L
Pest	Chilo suppressalis	striped riceborer	Lepidoptera	ecdysone receptor B1 isoform	Q	Р	М	V	v	Q	М	Ι	Κ	L
Pest	Omphisa fuscidentalis	bamboo borer	Lepidoptera	ecdysone receptor B1 isoform	Q	Р	М	v	v	Q	М	I	К	L
Beneficial	Papilio machaon	common yellow swallowtail	Lepidoptera	PREDICTED: ecdysone receptor isoform X1	Q	Р	М	V	V	Q	М	I	K	L
Beneficial	Papilio xuthus	<u>Asian swallowtail</u>	Lepidoptera	PREDICTED: ecdysone receptor isoform X1	Q	Р	М	v	v	Q	М	I	К	L
Pest	Plodia interpunctella	Indianmeal moth	Lepidoptera	ecdvsone receptor	0	Р	М	V	v	0	М	I	К	L
Beneficial	Danaus plexippus	monarch butterfly	Lepidoptera	ecdysteroid receptor EcR-B	Q	Р	М	V	v	Q	М	I	K	L
Pest	Plutella xylostella	diamondback moth	Lepidoptera	ecdysteroid receptor	Q	Р	М	V	V	Q	М	Ι	K	L
Pest	Choristoneura fumiferana	eastern spruce budworm	Lepidoptera	ecdysteroid receptor EcR-B	Q	Р	М	v	v	Q	М	Ι	K	L
Pest	Ectropis obliqua	moths	Lepidoptera	ecdysteroid receptor	Q	Р	М	v	v	Q	М	I	К	L
Pest	Grapholitha molesta	moths	Lepidoptera	ecdysone receptor	Q	Р	М	v	v	Q	М	I	К	L
Pest	Manduca sexta	tobacco hornworm	Lepidoptera	Ecdysone receptor	Õ	Р	М	v	v	0	М	I	K	L
Beneficial	Bombyx mori	domestic silkworm	Lepidoptera	EcRB1	Õ	Р	М	v	v	Q	М	I	K	L
Pest	Operophtera brumata	winter moth	Lepidoptera	Ecdysone receptor A	Q	Р	М	v	v	Q	М	Ι	К	L
Pest	Sesamia nonagrioides	Mediterranean corn borer	Lepidoptera	ecdysone receptor	0 0	Р	М	v	v	0 0	М	Ι	K	L
Beneficial	Bicyclus anynana	squinting bush brown	Lepidoptera	ecdysteroid receptor	Q	Р	М	V	V	Q	М	I	K	L
Beneficial	Junonia coenia	buckeye	Lepidoptera	ecdysteroid receptor	Q	Р	М	v	v	Q	М	I	K	L
Beneficial	Apis mellifera	honey bee	Hymenoptera	ecdysteroid receptor A isoform	Q	K	I	М	Т	Q	М	F	K	L
Beneficial	Apis dorsata	giant honeybee	Hymenoptera	PREDICTED: ecdysone receptor-like	Q	K	Ι	М	Т	Q	М	F	К	L
Beneficial	Apis florea	little honeybee	Hymenoptera	PREDICTED: ecdysone receptor isoform X2	Q	K	Ι	М	Т	Q	М	F	К	L
Beneficial	Bombus terrestris	buff-tailed bumblebee	Hymenoptera	PREDICTED: ecdysone receptor isoform X2	Q	K	Ι	М	Т	Q	М	F	K	L
Beneficial	Bombus impatiens	common eastern bumble bee	Hymenoptera	PREDICTED: ecdysone receptor isoform X2	0	Κ	Ι	М	Т	0	М	F	К	L
Beneficial	Melipona quadrifasciata	bees	Hymenoptera	Ecdysone receptor	Q	Κ	I	М	Т	Q	М	F	К	L
Pest	Polistes dominula	European paper wasp	Hymenoptera	EcR	Q	R	Ι	М	Т	Q	М	Y	К	L
Beneficial	Habropoda laboriosa	bees	Hymenoptera	Ecdysone receptor	Q	К	I	М	Т	Q	М	F	К	L
Beneficial	Orius laevigatus	Insidious flower bug	Hemiptera	Amar et al. 2012	H	К	I	М	V	Q	М	F	Q	L
Pest	Nezara viridula	southern green stink bug	Hemiptera	ecdysone receptor isoform	Н	R	Ι	М	v	Q	М	F	Q	L
Pest	Nilaparvata lugens	brown planthopper	Hemiptera	ecdysteroid receptor	Н	R	Ι	Т	v	Q	М	F	K	L
Pest	Bemisia tabaci	sweet potato white fly	Hemiptera		Н	R	Ι	М	Т	М	Т	F	К	V
Beneficial	Hydropsyche incognita	caddisflies	Trichoptera	EcR	0	Р	I	М	I	R	М	I	К	L
Non-insect	Daphnia magna	crustaceans	Branchiopoda	ecdysone receptor A1		- к	M	- <u>-</u>	 T	- <u>-</u>	 M	F	- <u>- </u> K	
Non-insect	Ixodes scapularis	black-legged tick	Arachnida	AamEcRA1, putative	S	R	I	G	S	м	М	F	Q	L
Non-insect	Oreochromis niloticus	Nile tilapia	Actinopteri	PREDICTED: oxysterols receptor LXR-alpha	-	R	L	Т	F	v	0	F	Q Q	L
Non-insect	Xenopus (Silurana) tropicalis	western clawed frog	Amphibia	oxysterols receptor LXR-beta	К	R	L	Т	F	v	۰ ٥	F	Q	L
Non-insect	Homo sapiens	human	Mammalia	oxysterols receptor LXR-alpha isoform 4	R	R	L	Т	F	v	0	F	Q	L
Non-insect	Picoides pubescens	downy woodpecker	Aves	Oxysterols receptor LXR-alpha	0	Е	L	Т	F	v	Q	F	Q O	L
-	i nomes pubescens	· · · · ·		олузатов пасрюї іллеарна	ų į		ட	1	1.	۷	ر ب	1.	ر ب	

• Conservation of key amino acid residues across Lepidoptera, including beneficial butterfly species, therefore predicting intrinsic susceptibility

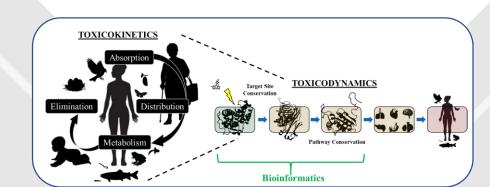
EcR Conservation across Lepidopteran Order

SeqAPASS Level 1, 2, 3: EcR Conserved – Consistent line of evidence based on all butterfly species with sequence information available that the EcR is present for a chemical to act upon

Ah-ha....another line of evidence!!!

Endangered Species Act (ESA)

- Determination of "may affect"
- Determination of "may affect and is likely to adversely affect"
 - Line of evidence for chemical susceptibility


Government

Steering Committee: Carlie LaLone (US EPA) Geoff Hodges (Unilever) Nil Basu (McGill U) Steve Edwards (RTI) Fiona Sewell (NC3Rs) Michelle Embry (HESI) Patience Browne (OECD)

Consortium to Advance Cross Species Extrapolation in Regulation

- 1. Define the taxonomic domain of applicability
- 2. Define the global regulatory landscape/need
- 3. Develop a bioinformatics toolbox
- 4. Communicate a shared scientific vision

Interested in Learning more or Joining: Contact LaLone.Carlie@epa.gov or Geoff.Hodges@unilever.com

Industry

Academia

Acknowledgements

U.S. EPA, ORD

Marissa Jensen (University of Minnesota Duluth) Sally Mayasich (University of Wisconsin) Monique Hazemi (ORISE) Sara Vliet (past ORISE 2021) Jon Doering (past NRC 2018) Colin Finnegan (past ORISE 2018) Donovan Blatz (past ORISE 2021)

<u>GDIT</u>

Cody Simmons Audrey Wilkinson Wilson Menendez Thomas Transue (past GDIT 2022)

SeqAPASS v6.0 (Released Sept. 2021)

LaLone.Carlie@epa.gov https://seqapass.epa.gov/seqapass/