WORKFLOW FOR EVALUATING SAFETY OF FOOD INGREDIENTS

Petitions for food ingredient safety evaluation to the US Food and Drug Administration (FDA) Center for Food Safety and Applied Nutrition (CFSAN) do not require animal testing. A general workflow for food ingredient safety testing is provided below.

1. REVIEW EXISTING SAFETY INFORMATION.

Similar ingredients may have similar toxicity profiles, and existing data can be used as follows to support read-across to similar ingredients:

- Identify and provide the case for ingredient similarity with other generally recognized as safe (GRAS) ingredients based on physicochemical properties.
- Available human studies provide the strongest evidence for safe consumption, but animal and in vitro data can also be used. Search for a history of safe consumption of similar ingredients in the following sources:
 - Published literature (existing human, animal, or *in vitro* studies)
 - Other GRAS notices¹ and toxicology studies therein
 - Decisions from other regulatory agencies (e.g. the European Food Safety Authority² and the Joint FAO/WHO Expert Committee on Food Additives³)

2. DEVELOP A NON-ANIMAL TESTING STRATEGY.

Prior to conducting any new testing, develop a non-animal testing strategy following guidelines established by the Organisation for Economic Co-operation and Development (OECD),⁴ the International Organization for Standardization (ISO),⁵ and the International Life Sciences Institute.^{6,7,8}

- In silico approaches can be used for the following:
 - Digestibility and allergenicity: BLAST⁹ and AllergenOnline¹⁰ searches
 - Absorption, distribution, metabolism, and excretion (ADME): GastroPlus¹¹
 - Genotoxicity, carcinogenicity, and developmental and reproductive toxicity: quantitative structure-activity relationship (QSAR) models^{12,13}
- In vitro methods can be used for the following:
- $\,{}^{\circ}$ Digestibility: dynamic gastrointestinal model $^{\!14,15}$
- Genotoxicity: bacterial reverse mutation test (OECD 471),¹⁶ chromosomal aberration test (OECD 473),¹⁷ mammalian cell gene mutation tests using the Hprt and xprt genes (OECD 476),¹⁸ mammalian cell gene mutation tests using the thymidine kinase gene (OECD 490),¹⁹ and micronucleus test (OECD 487)²⁰

3. SCHEDULE A PRE-SUBMISSION MEETING WITH THE FDA.

The FDA recommends arranging a pre-submission consultation prior to conducting any new testing to discuss alternative testing plans.²¹ This meeting is your opportunity to show the agency the value of your scientifically sound, non-animal testing approach to self-affirming ingredient safety. Be sure to include your team's scientific experts in this meeting so they can support and explain the scientific rationale.

4. PERFORM NON-ANIMAL TESTING BASED ON THE OUTCOME OF THE FDA PRE-SUBMISSION MEETING.

Ensure the FDA specifies all testing requirements in writing. If no product-related health claims are made, animal testing is not required.

If you have any questions or require additional information, contact PETA Science Consortium International e.V. at AndrewN@thepsci.eu.

- ¹FDA. GRAS notices. https://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices. Updated 16 September 2019.
- ²European Food Safety Authority. Food ingredients and packaging. https://www.efsa.europa.eu/en/topics/topic/food-ingredients-and-packaging.
- ³Food and Agriculture Organization of the United Nations. Chemical risks and JECFA. http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/en/.
- ⁴OECD. Chemical safety and animal welfare. http://www.oecd.org/chemicalsafety/testing/46725331.pdf.
- ⁵ISO. Standards. https://www.iso.org/standards.html.
- Delaney B, Astwood JD, Cunny H, et al. Evaluation of protein safety in the context of agricultural biotechnology. Food Chem Toxicol. 2008;46(Suppl 2):S71-S97.
- ⁷Hammond B, Kough J, Herouet-Guicheney C, Jez JM. Toxicological evaluation of proteins introduced into food crops. Crit Rev Toxicol. 2013;43(Suppl 2):25-42.
- 8Hampton Creek, Inc. GRAS notice no 684, page 37. https://www.fda.gov/media/103224/download.
- ⁹US National Library of Medicine. Basic Local Alignment Search Tool (BLAST). https://blast.ncbi.nlm.nih.gov/Blast.cgi.
- ¹⁰AllergenOnline. http://www.allergenonline.org/.
- ¹¹SimulationsPlus. GastroPlus®. https://www.simulations-plus.com/software/gastroplus/.
- ¹²Arvidson KB, Chanderbhan R, Muldoon-Jacobs K, Mayer J, Ogungbesan A. Regulatory use of computational toxicology tools and databases at the United States Food and Drug Administration's Office of Food Additive Safety. *Expert Opin Drug Metab Toxicol*. 2010;6(7):793-796.
- ¹³Lo Piparo E, Worth A, Manibusan M, et al. Use of computational tools in the field of food safety. Regul Toxicol Pharmacol. 2011;60(3):354-362.
- ¹⁴Triskelion. Determination of the digestible indispensable amino acid score (DIAAS) using a dynamic *in vitro* gastrointestinal model. 8 June 2016. https://www.triskelion.nl/determination-digestible-indispensable-amino-acid-score-diaas-using-dynamic-vitro-gastrointestinal-model/.
- ¹⁵Havenaar R, Maathuis A, de Jong A, Mancinelli D, Berger A, Bellmann S. Herring roe protein has a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. *Nutr Res.* 2016;36(8):798-807.
- ¹⁶OECD. Test No 471: Bacterial Reverse Mutation Test. https://www.oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test 9789264071247-en.
- ¹⁷OECD. Test No 473: In Vitro Mammalian Chromosomal Aberration Test. https://www.oecd-ilibrary.org/environment/test-no-473-in-vitro-mammalian-chromosomal-aberration-test_9789264264649-en.
- ¹⁸OECD. Test No 476: In Vitro Mammalian Cell Gene Mutation Tests Using the Hprt and xprt Genes. https://www.oecd-ilibrary.org/environment/test-no-476-in-vitro-mammalian-cell-gene-mutation-tests-using-the-hprt-and-xprt-genes_9789264264809-en.
- ¹⁹OECD. Test No 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene. https://www.oecd-ilibrary.org/environment/test-no-490-in-vitro-mammalian-cell-gene-mutation-tests-using-the-thymidine-kinase-gene 9789264264908-en.
- ²⁰OECD. Test No 487: In Vitro Mammalian Cell Micronucleus Test. https://www.oecd-ilibrary.org/environment/test-no-487-in-vitro-mammalian-cell-micronucleus-test_9789264264861-en.
- ²¹FDA. Guidance for industry and other stakeholders: Toxicological principles for the safety assessment of food ingredients (Redbook 2000). Revised 2007. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-and-other-stakeholders-toxicological-principles-safety-assessment-food-ingredients-0.