

Development of an Adverse Outcome Pathway Network to Support an Integrated Approach to Testing and Assessment of Carcinogenic Risk

Dr. Susanne A. Stalford

Senior Knowledge Research Scientist susanne.stalford@lhasalimited.org

Overview

- A View of the Future of Safety Assessment
- Introduction to AOPs
- Rearranging Current Knowledge
- Integration of Evidence with Pathways
- Reasoning
- Example application clofibrate
- Summary

A View of the Future of Safety Assessment

In vitro studies

In silico studies

Current Status of Carcinogenicity Testing

Alternatives

In silico models

<u>ICH M7</u> – Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk

Alternatives

In vitro, high-throughput and other models

IATA

- The effort to move toward an integrated approach to testing and assessment (IATA) is correlated with a rise in the volume of alternative evidence (e.g. *in vitro*, *in silico*) in order to make more accurate predictions of human risk than the existing animal models
- It is likely that many different types of evidence will be needed to replace traditional animal models
- Combining evidence from different sources can be a significant challenge
 - What is the assay measuring?
 - How closely is this assay linked to the adverse outcome?
 - How does this result relate to findings from other assays/models?

Adverse outcome pathways (AOPs) provide a framework to contextualise these assays
http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm

The Adverse Outcome Pathway Concept

What is an Adverse Outcome Pathway?

The OECD launched a new programme on the development of Adverse Outcome Pathways (AOP) in 2012. An AOP is an analytical construct that describes a sequential chain of causally linked events at different levels of biological organisation that lead to an adverse health or ecotoxicological effect (see figure below). AOPs are the central element of a toxicological knowledge framework being built to support chemical risk assessment based on mechanistic reasoning.

Schematic representation of the AOP illustrated with reference to a number of pathways:

Toxicant	Macro-Molecular Interactions	Cellular Responses	Organ Organisn Responses Response		Population Responses	
Chemical Properties	Receptor/Ligand Interaction DBA Binding	Gene activation Protein Production	Altered Physiolgy Disrupted Homeostasis	Lethality Impaired Development	Structure Extinction	
	Protein Oxidation	Altered Signaling	Altered tissue development/ function	Impaired Reproduction		

Ankley et al.; Environmental Toxicology And Chemistry; 29; 2010; 730-741

http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm

How Derek Nexus Predicts Toxicity

Query CompoundAdverse OutcomeMolecular Initiating EventKey Event

Adverse Outcome Pathway Translation

Rearranging Derek Nexus Knowledge

- Knowledge of MIEs/KEs contained in alerts relating to carcinogenicity within Derek Nexus v.6.0.1 was rearranged
- 85 KEs linking a compound class to carcinogenicity were assigned to 310 Derek Nexus alerts

Derek Nexus Endpoint	Number Of Alerts
Carcinogenicity	118
Photocarcinogenicity	5
Mutagenicity	144
Photomutagenicity	6
Chromosome Damage	140
Photo-induced chromosome damage	3
Non-specific genotoxicity	1
Photo-induced non-specific genotoxicity	2
Oestrogenicity	6
Oestrogen receptor modulation	9
Teratogenicity	7
Peroxisome Proliferation	13

Rearranging Derek Nexus Knowledge

- The pathways were further investigated to add in KEs missing from the Derek Nexus alerts
- Controlled terminology for each event and KER was used

Expanding the Network

- The pathways were further investigated to add in KEs missing from the Derek Nexus alerts
- Controlled terminology for each event and KER was used

No. MIEs	37
No. AOPs	37
No. Non-Genotoxic AOPs	18
No. Genotoxic AOPs	19

 This network has the potential to be expanded further using additional sources

Expanding the Network

benzophenone

Adding Evidence To The Network

Associate models with key events

- Associate assays and their measurements with key events
- Add data to the assays

Ames test In vitro chromosome aberration In vivo micronucleus ER binding assay Rodent repeat dose

Molecular Cellular Organ Assay and Assay measurement

Application

Reasoning Between Evidence

Reasoning is key in using AOPs to make decisions based on the evidence available

Clofibrate

AOP: H2HR Binding leads to Carcinogenicity Pathway C	AOP	Human Relevant	Pathway	KE	Evidence	Result	Complexity of System	Acceptability
H2HR Binding	H2HR Binding	Unlikely	С	Gastric Acid Secretion Inhibition	Derek Nexus Carc Alert	PLAUSIBLE	In silico	Accepted

AOP	Human Relevant	Pathway	KE	Evidence	Result	Complexity of System	Acceptability
PPAR Binding	Unlikely	D	PPAR Binding, Peroxisome Proliferation	Derek Nexus Carc Alert	PLAUSIBLE	In silico	Accepted

AOP	Human Relevant	Pathway	KE	Evidence	Result	Complexity of System	Acceptability
All	Unlikely	-	Hypertrophy, Hyperplasia, Peroxisome Proliferation	13-week subchronic study	Increase in organ weight	In vivo	Accepted

AOP	Human Relevant	Pathway	KE	Evidence	Result	Complexity of System	Acceptability	KE Outcome	Pathway Outcome	AOP Outcome
			Inherited DNA Mutation	Ames Test	Negative	In vitro	Accepted		Negative	Negative
		А		TGR Mutation Assay	Negative	In vivo	Accepted	Negative		
				In vitro CA Test	Conflicted	In vitro	Accepted		Negative	
Genotoxicity*	Likely			In vitro CA Test	Equivocal	In vitro	Accepted			
		R	Chromosome Structural Damage	In vitro CA Test	Negative	In vitro	Accepted	Negative		
		D		In vitro CA Test	Positive	In vitro	Accepted			
				In vivo CA Test	Negative	In vivo	Accepted			
			Micronucleus Formation	In vitro MN Test	Negative	In vitro	Accepted	Negative		
H2HR Binding	Unlikely	С	Gastric Acid Secretion Inhibition	Derek Nexus Carc Alert	PLAUSIBLE	In silico	Accepted	Positive	Positive	Positive
PPAR Binding	Unlikely	D	PPAR Binding, Peroxisome Proliferation	Derek Nexus Carc Alert	PLAUSIBLE	In silico	Accepted	Positive	Positive	Positive
All	Unlikely	-	Hypertrophy, Hyperplasia, Peroxisome Proliferation	13-week subchronic study	Increase in organ weight	In vivo	Accepted	Positive	-	Positive

Positive (unlikely human relevant)

Future - Moving From Hazard To Risk

Summary

- An AOP network for carcinogenicity has been built using a literature-based approach of knowledge extracted from Derek Nexus and public literature.
- Lhasa has developed an AOP framework which can be used to:

-organise and give context to data

-visualise the data and knowledge relationships

...with the aim of aiding decision-making in risk assessment.

- AOPs can be used as a framework for exploring hazard and risk assessment in a broad range of industries
 - from early (discovery) phases in development through to safety assessment
 - evidence organised in such a way help make decisions in a transparent and robust manner

Alex Cayley Robert Foster Reza Zarei Emma Hill Grace Kocks Steven Kane Alun Myden Dan Newman Jonathan Vessey

Thank you!

shared **knowledge** • shared **progress**

Lhasa Limited Granary Wharf House, 2 Canal Wharf Leeds, LS11 5PS Registered Charity (290866) +44(0)113 394 6020

info@lhasalimited.org www.lhasalimited.org

Company Registration Number 01765239