SCIENTIFIC BENEFITS OF USING ANIMAL FRIENDLY AFFINITY REAGENTS (AFAS) AS REPLACEMENTS FOR ANIMAL-DERIVED ANTIBODIES.

Dr Alison Gray

SCIENTIFIC BENEFITS OF USING ANIMAL FRIENDLY AFFINITY REAGENTS (AFAS) AS REPLACEMENTS FOR ANIMAL-DERIVED ANTIBODIES.

Dr Alison Gray

1. The traditional generation and use of antibodies, and associated problems

2. Overview and generation of AFAs, mechanistic principles mirroring nature

3.Benefits of animal free antibodies and affinity reagents

4.Barriers to their uptake

5. Sources of animal free technologies

Mission (2013-present)

AFABILITY is striving to replace Animal Derived Antibody (ADA) production methods with Animal Friendly Affinity-reagents (AFAs) that do not require the use of animals, thereby significantly reducing the numbers and suffering of animals in the biomedical sciences and encouraging better science.

AFABILITY creates **awareness** surrounding the use of ADA production methods and alternatives by all scientific disciplines, challenges the **enforcement** of Directive 2010/63/EU and improves **accessibility** of replacement methods

ANTIBODY USE ACROSS ALL SCIENTIFIC DISCIPLINES

SOURCE	TARGET			
Diagnostics and health	genetic testing, markers of infectious, chronic and sexually-transmitted disease, oncology			
Therapeutics	rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, Ebola and different types of cancers			
Substances of abuse testing	MDMA, methadone, digoxin, cocaine, caffeine, ketamine, marijuana, methamphetamine and barbiturates			
Anti doping programs for competitive sport	Erythropoietin, human growth hormone and human chorionic gonadotrophin			
Fertility, ovulation and pregnancy testing	human chorionic gonadotrophin, luteinizing hormone, progesterone			
Food safety and environmental contaminants in air, water, soil, packaging, processing / cooking and naturally occurring	Radionuclides, polycyclic aromatic hydrocarbons, arsenic, heavy metals, pesticides, natural toxins, lubricants, cleaning agents, carcinogens, Processing contaminants, hormones, veterinary drugs, allergens			

MAKING ANTIBODIES BY ANIMAL IMMUNIZATION...

Foreign particle / Antigen injected into animal.... Second exposure Secondary immune to antigen response to antigen First exposure Immune response to to antigen attack the intruder! Primary immune response to

Extraction from the sera (blood) or B cells (spleen)

Estimated 1 million animals per year in EU (mice, rats, rabbits, ungulates, e.g., goats)

BEWARE OF USING ANIMAL DERIVED ANTIBODIES!

Enne. Mm.

Polyclonal Antibodies (from serum) (Von Behring and Shibasaburo, 1898)

- ☺ inexpensive and quick to produce
- multiple epitope recognition
- 🧐 high potential for cross-reactivity due to multiple epitope recognition and high background (only 0.5 - 5% positive in serum
- 😌 batch-to-batch variably leads to irreproducible data

- not possible to store clone
- no easy way to determine the genetic sequences
 Possible to sequence but rarely done for R&D

Monoclonal Antibodies (from spleen) (Köhler and Milstein, 1975)

- More expensive and laborious to produce
- ☺ high specificity to only one unique epitope
- Sector Assumed reduced probability of cross reactivity due to unique epitope recognition
- ☺ routinely achieve batch-to-batch homogeneity / finite reproducibility
- Scientific literature littered with reports of nonspecificity: a third of monoclonals had one or more additional productive binding sites (Bradbury et al., 2018)
- ⊖ Can store but risk loss during storage / repeat use

....Resounding impact in terms of wasted cost, time and resources (annual loss of \$800m to the biomedical research community), as well as repercussions on diagnosis and health management.

ANIMAL FRIENDLY AFFINITY REAGENTS (AFAs)

Recombinant AFAs that are non-animal-derived / non immunized

Antibodies

- Non antibody scaffolds or mimetics (Aptamers, Affimers, DARPins, Affibodies, Monobodies, Anticalins and others
- Production by <u>naïve</u> phage display (without animal immunization), yeast display or ribosome display etc

The 2018 Chemistry Laureates

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2018 with one half to Frances H. Arnold "for the directed evolution of enzymes" and the other half jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies". Read the press release

AFAs: HARNESSING NATURAL DIVERSITY

Heavy chain

USING AFAs TO HARNESS NATURAL DIVERSITY:

constructing the vector

either cut and paste natural repertoire from isolated donor B lymphocytes into vector or create diversity synthetically

USING AFAs TO HARNESS NATURAL DIVERSITY:

displaying the antibody

USING AFAs TO HARNESS NATURAL DIVERSITY: binder selection / surveillance

... these aren't instead of antibodies. These are antibodies!

AFAs adopt the same principles evolved by nature: mechanisms, repertoire / diversity, structure, surveillance, affinity, function...

USING AFAs TO HARNESS NATURAL DIVERSITY: further refinement

... these aren't instead of antibodies. These are antibodies!

AFAs adopt the same principles evolved by nature: mechanisms, repertoire / diversity, structure, surveillance, affinity, function...

Affinity maturation (sculpted antibody)

THE 3 MAIN ROUTES TO ANTIBODY PRODUCTION

IMMUNIZED RECOMBINANT ANTIBODIES FROM HYBRIDOMAS / LIBRARIES

- Immunized (animal-derived) recombinant antibodies are also 'sequence defined' and have most of the same benefits as AFAs
- Costly and time consuming / no net reduction in animal use
- Immunization / new library required for each new antigen
- Suffer the same issues as monoclonals from hybridomas
- Be careful! Difficult to identify in catalogues

ADVANTAGES OF NON-ANIMAL-DERIVED ANTIBODIES

- The library is pre-designed with all desired features (capture and analysis tags, restriction sites etc)
- Antibody selection in ~ 4 weeks
- Opportunities for refinement: Selection under challenging conditions, Accessibility of gene sequences for downstream processing e.g., format changes, Next Generation Sequencing (NGS), affinity maturation
- One library equivalent to a life-time supply of animals
- AFAs are routinely sequence-defined from the start: Polyclonals not sequence-defined, monoclonals from hybridomas can be with additional effort
- You can always guarantee the reproducibility of your scientific results : No batch to batch variation No irretrievable loss of clone No expensive storage conditions

Note: Certain scientific limitations common to both animal-derived and AFAs, due to the complexity of the natural antibody-antigen binding relationship: VALIDATE!

AFAs AS POLYCLONALS

- A 'cocktail' of AFAs can be used to target multiple epitopes
- Multiclonals (Abcalis[™]): a mixture of different, carefully selected AFAs with complementary epitope binding sites to amplify signal strength
- For applications where polyclonals have historically been relied upon, such as scorpion venom neutralization, it is also possible to neutralize the closely related toxins by using an AFA approach
- E.g., Diptheria antitoxin: AFAs have replaced horse serum

WHY ARE WE NOT ALREADY USING REPLACEMENT METHODS?

- Scientific misconceptions block uptake of replacement methods including ...
 - Technology is not yet mature and ready to replace animals
 - Affinity is poor, need the whole animal response, require immunized animals

Project	AFA clones (from phage display)	against # of antigens
Affinity Proteome	130	48
Affinomics	2,151	582
Antibody Factory	461	204
Sanger Atlas	7,236	292
SGC-Pilot	340	20
total	103,181	1,146

AFAs for research in EU consortia

total: incl. 193 Darpins

Sources: https://cordis.europa.eu, Schofield et al. 2007, Colwill et al. 2011

AFAs for therapeutics

INN	Trade name	Developer	Library	Target	Indication	Status ¹
Ramuciru mab	Cyramza	Eli Lilly	Dyax	VEGFR2	NSCLC, colorectal cancer, gastric cancer	Approved
Belimumab	Benlysta	HGS/GSK	САТ	BLyS	Systemic Iupus	Approved
Raxibacum ab	ABthrax	HGS/GSK	CAT	B. anthracis	Prophylaxis and treatment of anthrax	Approved
Necitumu mab	Portrazza	Lilly/BMS	Dyax	EGFR	Squamous lung cancer	Approved
Bimagrum ab		Novartis	Morphosys	ActIIR	Sporadic inclusion body myocitis	Phase III
Tralokinum ab		Astra Zeneca	CAT	IL-13	Asthma, ulcerative colitis	Phase III
Ganteneru mab		Roche	Morphosys	Amyloid beta	Alzheimer's disease	Phase III
Guselkuma b	Tremfya	Janssen	Morphosys	IL-23p19	Plaque psoriasis	Phase III
Avelumab	Bavencio	Merck KGaA/ Pfizer	Morphosys	PD-L1	NSCLC	Phase III

WHY ARE WE NOT ALREADY USING REPLACEMENT

METHODS?

(addressed by the ESAC report / ECVAM recommendation)

- Scientific misconceptions block uptake of non-animal-derived antibodies including ...
 - Technology is not yet mature and ready to replace animals
 - Affinity is poor, need the whole animal response, require immunized animals
 - Loss of polyclonal characteristics
- Lack of understanding of the new, sophisticated technology...shrouded in mystery!
- Lack of expertise / motivation by users of traditional methods and a propensity toward familiar methods due to economics /time factor / implementation / inertia
- Focus on pharma, high prices, royalties
- Accessibility to commercial AFAs limited (but improving) ...

ACADEMIC SUPPLIERS OF AFAS

... Warning: Others are not as 'animal-free' as they claim...

AFAS FROM COMMERCIAL SOURCES

