Use of Non-animal Skin Sensitization Test Methods for US EPA Classification: Current Approaches and Future Opportunities

Advancing Science & Animal Welfare Together Hans Raabe, M.S. V.P., Chief Operating Officer

27 May 2020

Overview

- Brief Introduction to Skin Sensitization
- Adverse Outcome Pathway (AOP)
- Current Regulatory-accepted Test Methods
 - Key Event 1: Direct Peptide Reactivity Assay (DPRA)
 - Key Event 2: KeratinoSens and LuSens Assays
 - Key Event 3: Human Cell Line Activation Test (h-CLAT)
 - Example issues presented as case studies
- EPA Recommended Testing Strategies / Defined Approaches
- Future Opportunities

Sensitization Elicitation: Allergic Contact Dermatitis

Common allergens and sources of exposure

Allergens Epoxy resin system(ERS) Formaldehyde Fragrance mix Neomycinsulfate Nickel sulfate

Source

Adhesives, paints Pesticides, biocides Toiletries, cosmetics Creams, deodorants Costume jewelry, tools

Skin Sensitization Testing Methods

In Vivo

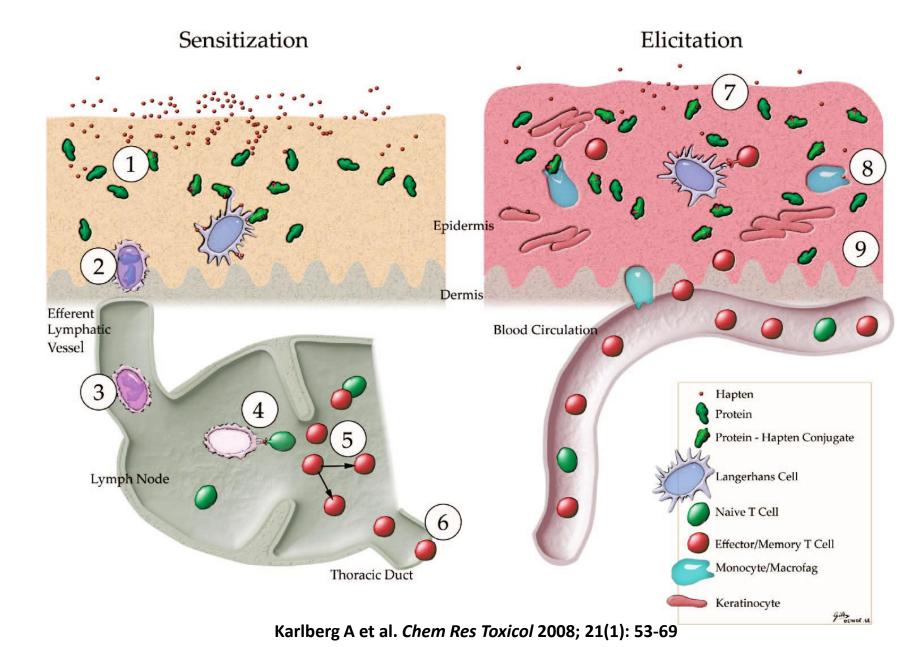
 Guinea Pig Maximization Test (GPMT) and **Buehler Test**

Guinea Pig

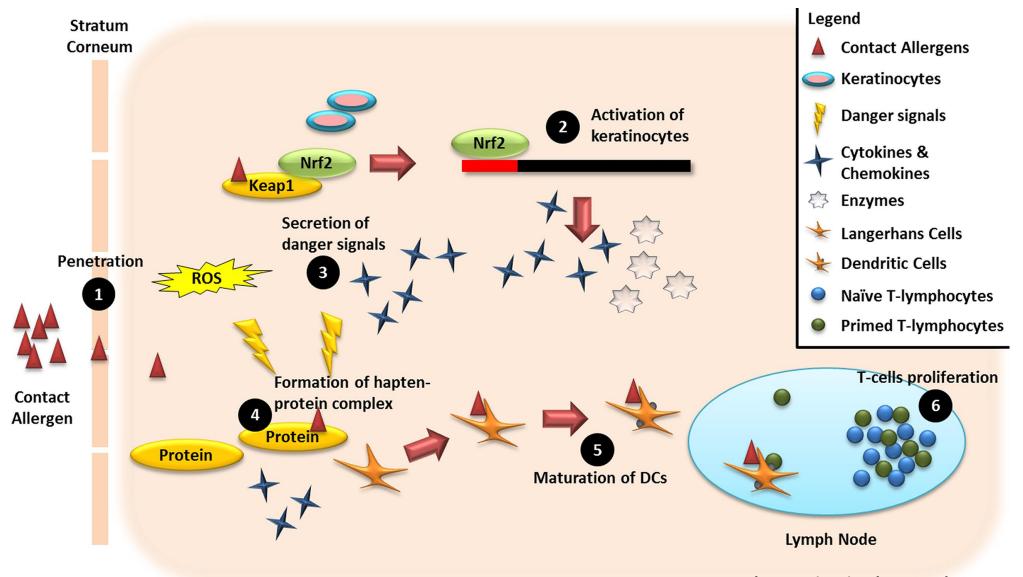
Maximization Test

 Local Lymph Node Assay (LLNA)

Human Patch Testing

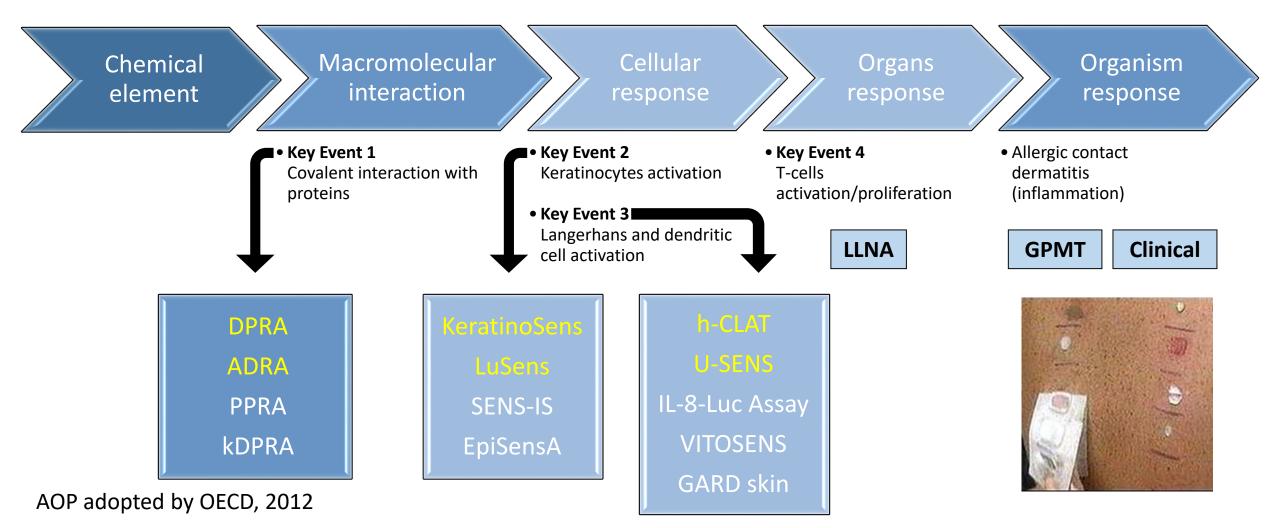


Local Lymph Node Assay

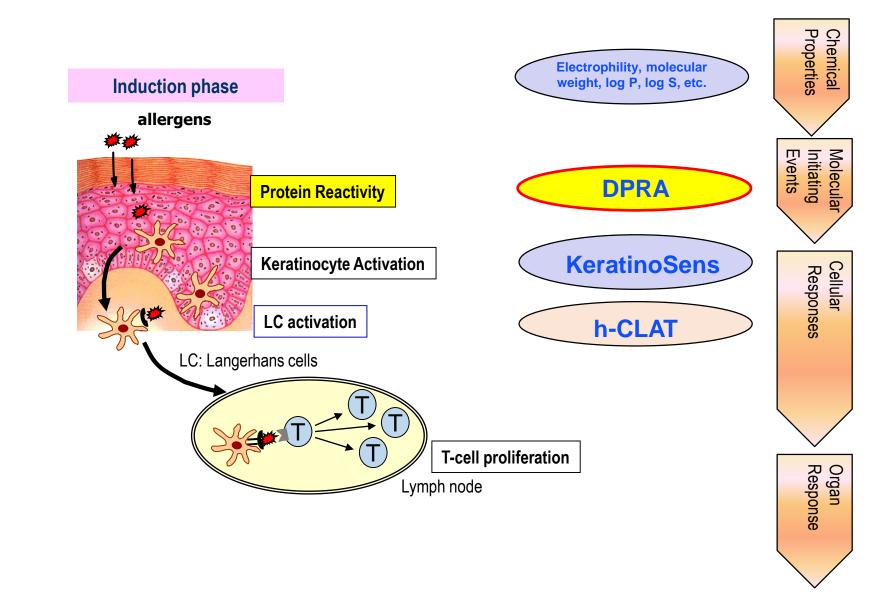


Human Patch Testing

Sensitization Induction and Elicitation



Mechanistic overview supporting endpoint development



Wong et al,. Frontiers in Pharmacology 2015, (6) 94 1-13

Skin Sensitization: Adverse Outcome Pathway (AOP)

AOP – Allergic Contact Dermatitis

Direct Peptide Reactivity Assay (DPRA) (OECD TG 442C) Key event 1

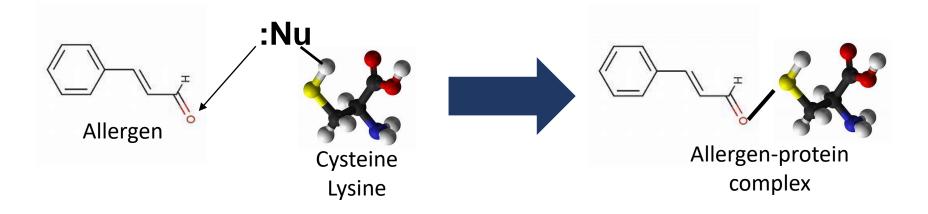
TOXICOLOGICAL SCIENCES 81, 332–343 (2004) doi:10.1093/toxsci/kfh213 Advance Access publication July 14, 2004

Development of a Peptide Reactivity Assay for Screening Contact Allergens

V

G. Frank Gerberick,*¹ Jeff D. Vassallo,* Ruth E. Bailey,* Joel G. Chaney,* Steve W. Morrall,* and Jean-Pierre Lepoittevin[†]

*The Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45253-8707, and †Université Louis Pasteur, Laboratorie de Dermatochimie, UMR 7123, Strasbourg, France

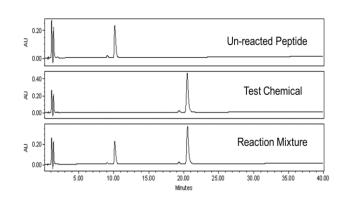

Received April 26, 2004; accepted June 22, 2004

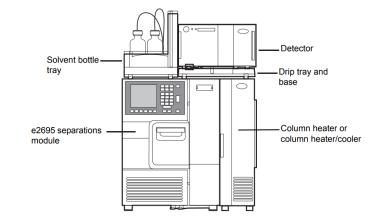
Direct Peptide Reactivity Assay (DPRA) (OECD TG 442C) Key event 1

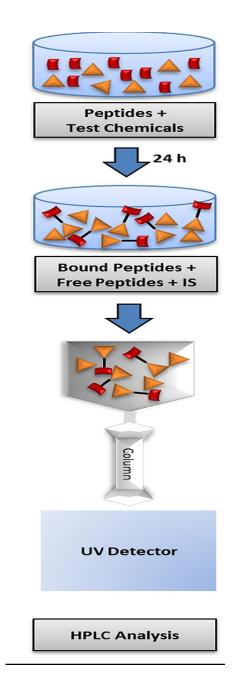
Addresses the process of haptenation (covalent binding of lowmolecular weight substances (haptens) to skin proteins)

Molecular Initiating Event (MIE)

Measures peptide reactivity of test chemicals by quantifying the depletion of synthetic peptides containing either *lysine* or *cysteine*

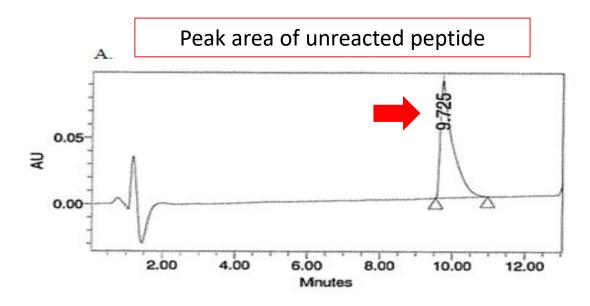


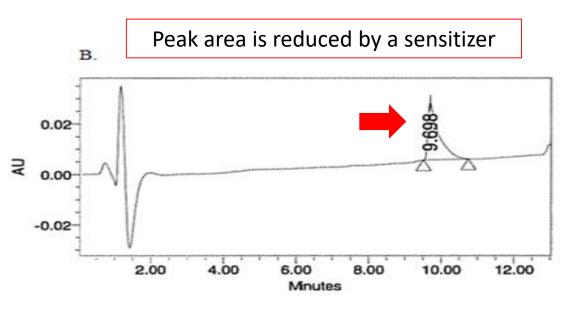



Direct Peptide Reactivity Assay (DPRA) (OECD TG 442C)

Synthetic cysteine and lysine-containing peptides Ac-RFAACAA-COOH (0.667 mM in pH 7.5 buffer) Ac-RFAAKAA-COOH (0.667 mM in pH 10.2 buffer) Controls: Positive control (cinnamic aldehyde)

Negative control (peptide solutions) Mix 1:10 and 1:50 for cysteine and lysine peptides for 24h. Measure relative peptide concentration by HPLC with gradient elution and UV detection at 220nm

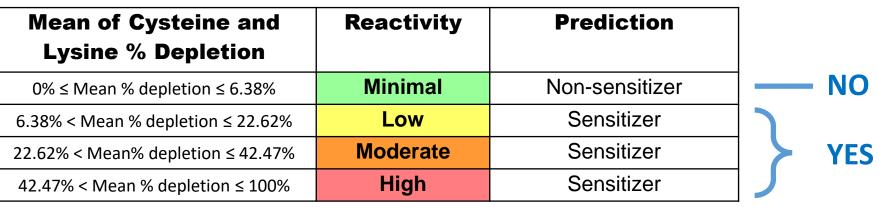




Wong et al,. Frontiers in Pharmacology 2015, (6) 94 1-13

Direct Peptide Reactivity Assay (DPRA) (OECD TG 442C) Key event 1

	SampleName	Vial	Injection Volume (ul)	RT	Area
1	Control	22	6.00	9.725	2059227



	SampleName	Vial	Injection Volume (ul)	FIT	Area
1	Onnamic aldehyde (ref)	10	6.00	9.698	465116

Direct Peptide Reactivity Assay (DPRA) Prediction model

There are 2 prediction models that can be used for the DPRA

Most commonly used to make a prediction

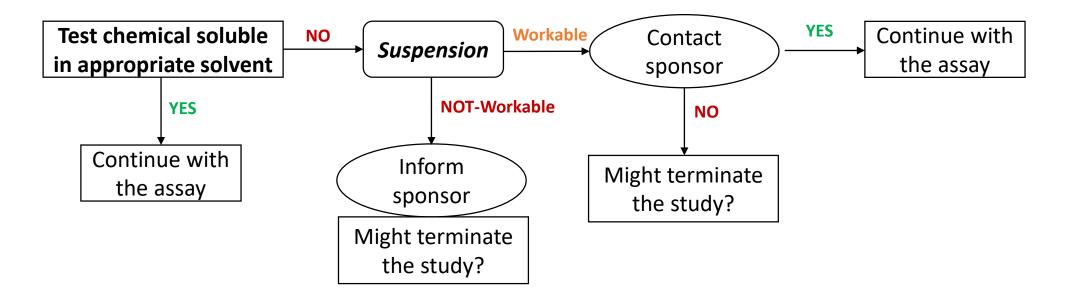
Used when lysine data is inconclusive

Mean of Cysteine %	Reactivity	Prediction		
Depletion				
0% ≤ Mean % depletion ≤ 13.89%	Minimal	Non-sensitizer		• NO
13.89% ≤ Mean % depletion ≤ 23.09%	Low	Sensitizer		
23.09% ≤ Mean % depletion ≤ 98.24%	Moderate	Sensitizer		YES
98.24% ≤ Mean % depletion ≤ 100%	High	Sensitizer		

Direct Peptide Reactivity Assay (DPRA) Limitations

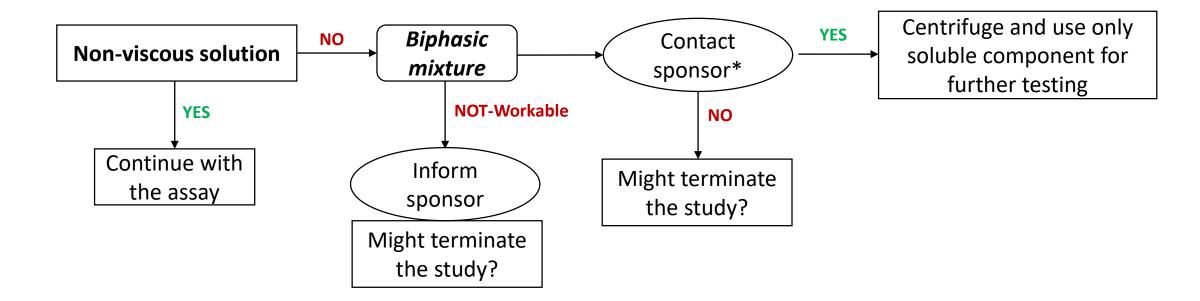
- A test chemical should be soluble in an appropriate solvent up to 100 mM
 - In case of insolubility, test chemicals may be used at lower soluble concentrations, however, negative results may be inconclusive
- Limited dynamic range due to lack of kinetic data
- No discrimination of adduct formation from side reactions such as peptide oxidation/dimerisation potential over-prediction?
- Lack of metabolic activity pro-hapten predictions?
- Not applicable to metal compounds, or substances of unknown or variable composition or complex reaction products or biological materials

DPRA Case Studies


<u>Situation:</u> To decide weather to use **Mean Cysteine and Lysine peptide depletion** (%) model or **Cysteine only peptide depletion** (%) model to predict skin sensitization potential of the test article.

		Mean Peptid	le Depletion (%)	Mean Peptide			Potential	Sensitizer?
IIVS Test Article Number	Sponsor's Designation	Cysteine	Lysine	Depletion (%) of Cysteine and Lysine	Reactivity (Cysteine only)	Reactivity (Cysteine and Lysine)	Based on Cysteine only prediction model	Based on mean of Cysteine & Lysine prediction model
19AIXX	Article D	12.17	3.23	7.70	Minimal	Low	Non-Sensitizer	Sensitizer
Positive Control	Cinnamic Aldehyde	75.87	65.30	6.38 is the cutoff!				

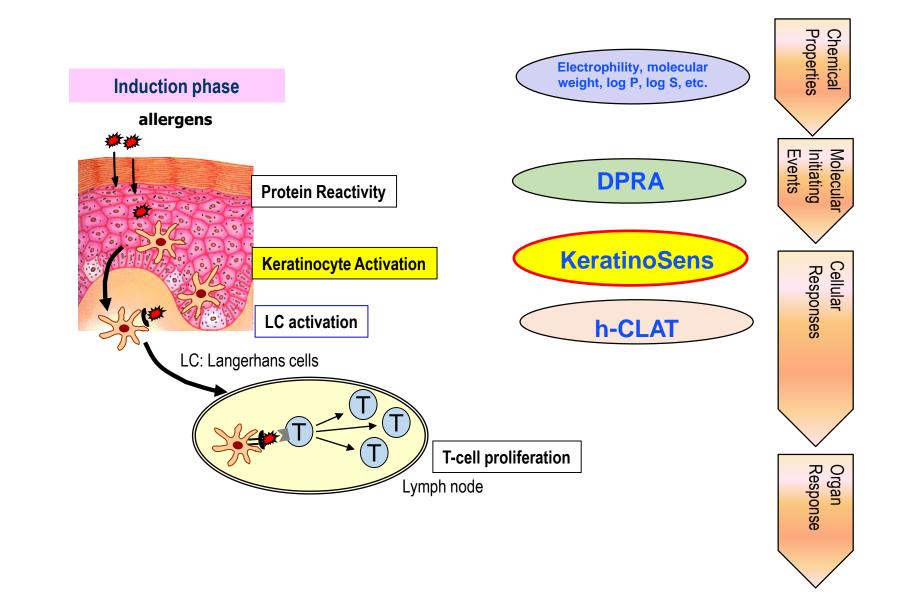
- **Option 1:** Repeat the study
- **Option 2:** Use Cysteine only peptide depletion (%) prediction model
- **Option 3:** Perform other skin sensitization tests to predict the skin sensitization potential


Solubility

- In an ideal situation, a test chemical has to form a non-viscous solution or non-viscous suspension in either of the preferred solvents for DPRA.
- Following is an approach we use if the test chemical does not go into the solution after vortexing, sonicating and heating.

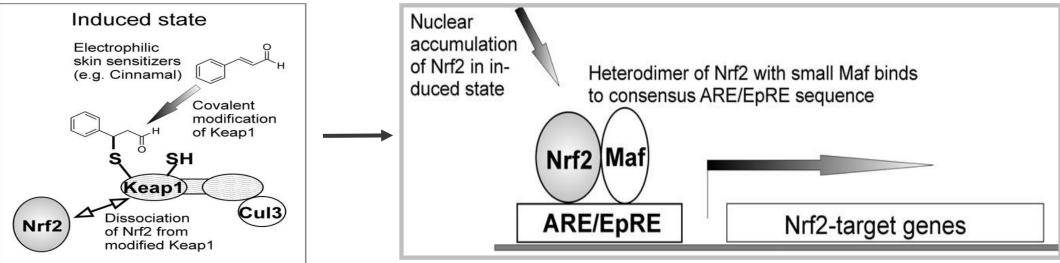
Reaction Mixture (Test Article + Peptide)

Precipitates or biphasic mixture observed after mixing peptide solution with the test chemical

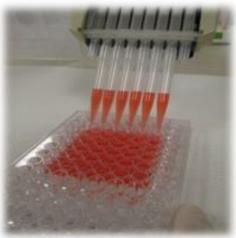

*Recommend to centrifuge at low speed for 5 min (OECD DPRA TG 442C)

Situation: Since the test material (formulation) was tested neat and reaction mixture (test article + peptide) formed precipitates, reaction mixture was centrifuged (low speed for 5 min) and only supernatant was assayed

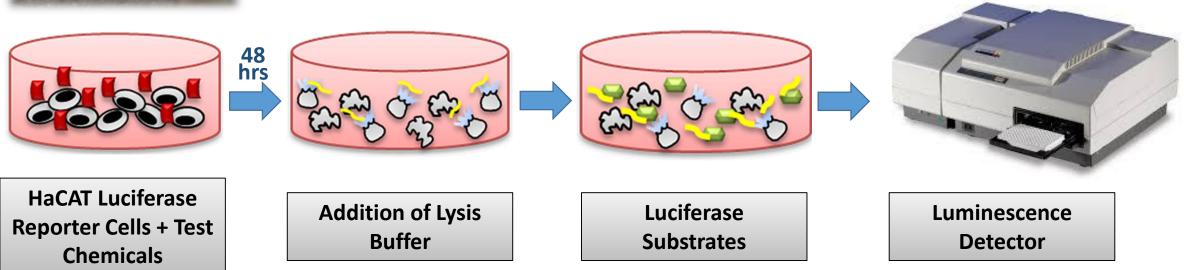
		Mean Peptid	e Depletion (%)	Mean Peptide			Potentia	l Sensitizer?
IIVS Test Article Number	Sponsor Designation	Cysteine	Lysine	Depletion (%) of Cysteine and Lysine	Reactivity (Cysteine only)	Reactivity (Cysteine and Lysine)	Based on Cysteine only prediction model	Based on mean of Cysteine & Lysine prediction model
19AHXX (neat)	1	32.62	59.07	45.85	Moderate	High	Sensitizer	Sensitizer
19AHXX (neat)	2	41.27	76.67	58.97	Moderate	High	Sensitizer	Sensitizer
Positive Control	Cinnamic Aldehyde	72.95	49.09					


- **Option 1:** Use lower concentrations (10%, 20%, 50%) to get a dose-dependent effect that can be extrapolated
- **Option 2:** Perform other skin sensitization tests
- **Option 3:** Use WoE based on other information

AOP – Allergic Contact Dermatitis


KeratinoSens
TM Assay
(OECD TG442D)Key event 2

- Addresses keratinocyte responses by activation of antioxidant/electrophile response element dependent pathway (Keap1-Nrf2-ARE)
- The repressor protein Keap1 reacts with electrophiles, allowing dissociation of the transcription factor Nrf2 to translocate to the nucleus and induce the antioxidant response element (ARE)
- Reporter construct with a copy of the ARE-element of the human AKRIC2 gene upstream of a luciferase gene



Natsch A, In: Alternatives for Dermal Toxicity Testing, 2017, pp 235-248

KeratinoSensTM Assay (OECD TG442D) Key event 2

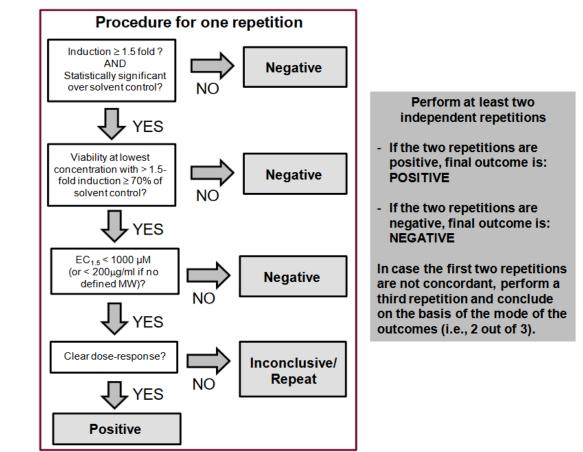


- HaCaT (immortalized keratinocyte cell line)
- 48 hour incubation with test material (12 concentrations)
- Addition of Promega lysis buffer and luciferase substrate
- Quantitative gene induction by luciferase activity

KeratinoSens
TM Assay
(OECD TG442D)Key event 2

- Measures luciferase gene induction and cytotoxicity compared to solvent control wells
 - > 1.5 fold gene induction; ≥ 70% viability; apparent dose response
- Controls
 - Negative/Solvent: DMSO
 - Positive: Cinnamic Aldehyde

KeratinoSensTM Assay Prediction Model

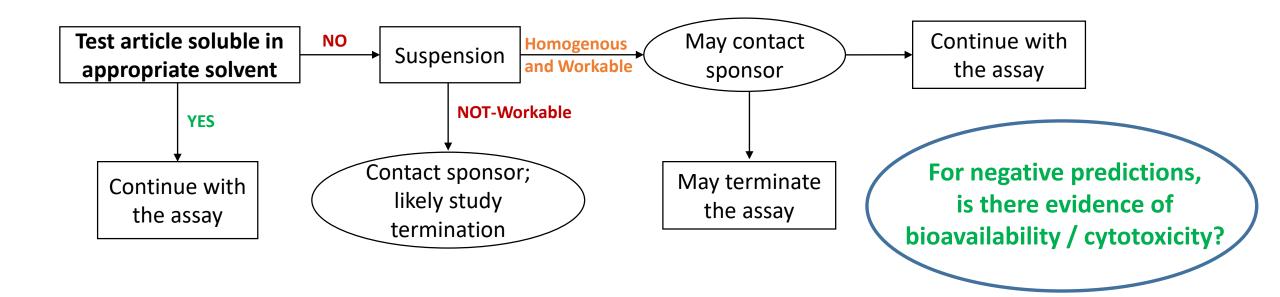

- Concordant results from at least two independent trials are required to predict skin sensitization potential of a test article
- Viability must be ≥ 70% at the lowest concentration that elicited an induction greater than 1.5-fold
- A positive prediction should display an $\text{EC}_{1.5}$ value less than 1000 μM
- If there is not a clear dose response, the prediction may be inconclusive

OECD/OCDE

442D | 19

Figure 1. Prediction model used in the KeratinoSensTM test method.

A KeratinoSensTM prediction should be considered in the framework of a Defined Approach or of an IATA and in accordance with the provisions of paragraphs 7 and 8 of the general introduction

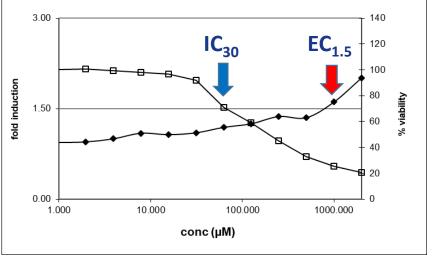


KeratinoSensTM Case Studies

Ideally, a test article forms a non-viscous solution or homogenous non-viscous suspension in a preferred solvent

Situation: Test article prediction was positive in the first trial and negative in the second

Option: Conduct a third trial

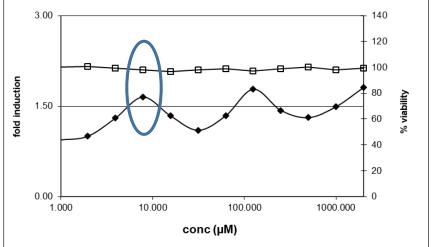

IIVS Test Article Number	Sponsor's Designation	Trial	EC _{1.5} (μΜ)	ΙC ₃₀ (μΜ)	Sensitization Potential	3.00 3.00 55 50 50 50 50 50 50 50 50
		B1	968.8	>2000	Sensitizer	npu 1.50
20AAXX	1	B2	>2000	>2000	Non-Sensitizer	- 40 - 20
		B3	923.1	>2000	Sensitizer	0.00 1.000 10.000 100.000 1000.000 conc (μM)

<u>Conclusion</u>: Test article was considered a potential sensitizer

Situation: Test article had an EC_{1.5} value less than 1000 μ M in the first two trials and an IC₃₀ value of less than 1000 μ M

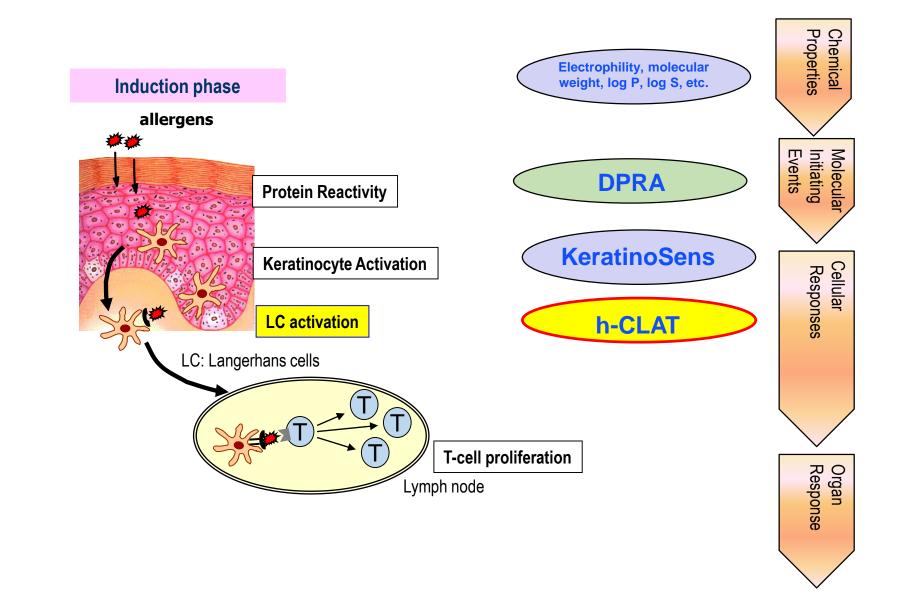
Evaluation: Determine if the IC_{30} value occurs at a concentration less than the $EC_{1.5}$

IIVS Test Article Number	Sponsor's Designation	Trial	EC _{1.5} (μΜ)	ΙС ₃₀ (μΜ)	Sensitization Potential
20AAXX	2	B1	968.8	85.3	Non-Sensitizer
	2	B2	923.1	92.4	Non-Sensitizer

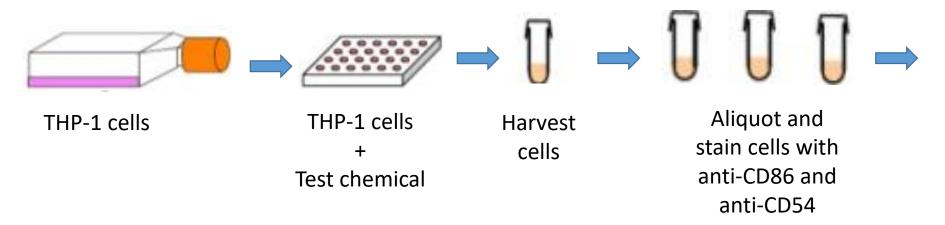


Conclusion: Test article was not considered a potential sensitizer

Situation: Test article crosses the induction cut off of 1.5 multiple times


Evaluation: Determine the $EC_{1.5}$ value as the lowest dose that the test article elicits a statistically significant induction value greater than 1.5-fold

IIVS Test Article Number	Sponsor's Designation	Trial	ΕС _{1.5} (μΜ)	ΙC ₃₀ (μΜ)	Sensitization Potential
20AAXX	3	B1	8.3	>2000	Sensitizer
	5	B2	7.1	>2000	Sensitizer


Conclusion: Test article was considered a potential sensitizer

AOP – Allergic Contact Dermatitis

Human Cell Line Activation Test (h-CLAT) (OECD TG 442E) Key event 3

- **Test system:** THP-1 cells: an immortalized human monocytic leukemia cell line, used as a surrogate for DC
- Measures modulation of the expression of dendritic cell surface phenotypic biomarkers (CD86 and CD54) by flow cytometry
- **Prediction model:** RFI CD86 ≥150% and CD54 ≥200%

Analyze by flow cytometry

Human Cell Line Activation Test (h-CLAT)

ORIGINAL ARTICLE

Coupling of Contact Sensitizers to Thiol Groups is a Key Event for the Activation of Monocytes and Monocyte-Derived Dendritic Cells

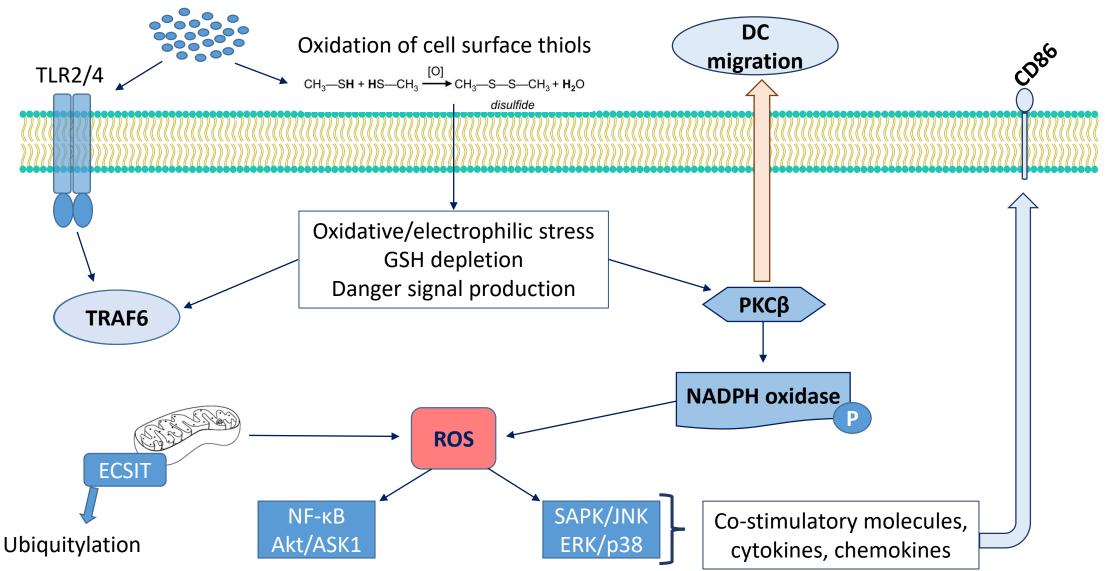
Detlef Becker, Elke Valk, Sabine Zahn, Pia Brand, and Jürgen Knop Department of Dermatology, University of Mainz, Germany

J Invest Dermatol 120:233-238, 2003

The Journal of Toxicological Sciences (J. Toxicol. Sci.) Vol.34, No.2, 139-150, 2009 139

Original Article

Modification of cell-surface thiols elicits activation of human monocytic cell line THP-1: Possible involvement in effect of haptens 2,4-dinitrochlorobenzene and nickel sulfate


Morihiko Hirota¹, Mie Suzuki¹, Shigenobu Hagino¹, Saori Kagatani², Yoshinori Sasaki², Setsuya Aiba² and Hiroshi Itagaki¹

¹Quality Assessment Center, Shiseido Co., Ltd., 2-12-1 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-8643, Japan ²Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan

(Received September 26, 2008; Accepted December 8, 2008)

Principle of the h-CLAT Test Method

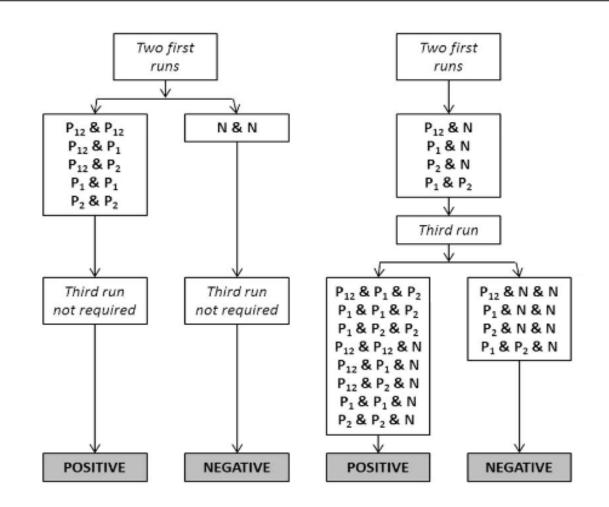
Electrophile (contact allergens)

Galbiati, V., Papale, A., Kummer, E. and Corsini, E., 2016. In vitro models to evaluate drug-induced hypersensitivity: potential test based on activation of dendritic cells. Frontiers in pharmacology, 7, p.204.

Human Cell Line Activation Test (h-CLAT) Limitations

- Bioavailability: Not applicable to poorly soluble compounds, but stable suspensions/dispersions acceptable
- Risk of false negatives with chemicals with log K_{ow} >3.5
- Limited metabolic activity pro-hapten predictions?

• Test chemical fluorescence at the FITC wavelength



h-CLAT Case Studies

Human Cell Line Activation Test (h-CLAT) Prediction Model

- Prediction model for determining skin sensitization potential
- Concordant results from two runs are required to predict the skin sensitization potential of a test chemical

 P_1 = positive induction of CD54 P_2 = positive induction of CD86

OECD/OCDE

442E

Data Interpretation

<u>Situation:</u> Test chemical resulted in a positive response based on CD86 RFI in first run and a positive response based on CD54 RFI in second run.

Option: Run a third run

IIVS Test Article Number	Sponsor's Designation	CV75 (µg/mL)	Trial	CD54	CD86	Sensitization Potential
			B1	NO	YES	Sensitizer
19AEXX	1	>1000	B2	YES	NO	Sensitizer
			В3	YES	NO	Sensitizer

<u>Conclusion</u>: Test chemical was predicted to be a skin sensitizer

Data Interpretation

<u>Situation</u>: Test chemical resulted in a negative response in first run and resulted in a positive response based on CD54 RFI in second run.

Option: Run a third run

IIVS Test Article Number	Sponsor's Designation	CV75 (µg/mL)	Trial	CD54	CD86	Sensitization Potential
			B1	NO	NO	Non- Sensitizer
19AAXX	1	31.8	B2	YES	NO	Sensitizer
			В3	NO	NO	Non- Sensitizer

Conclusion: Test chemical was predicted to be a non-sensitizer

Applicability Domain: DPRA, KeratinoSens and h-CLAT

Special Considerations: DPRA, KeratinoSens and h-CLAT

• Testing mixtures

- Higher concentrations and dose ranges may need to be tested to account for low concentration of a sensitizer in a complex mixture
- Assay optimization testing for mixtures is done with spiked samples
- Addition of metabolism to correctly predict pro-haptens
 - *In chemico* and *in vitro* assays can include a metabolism component. Ex. PPRA uses a peroxidase/peroxide rxn for certain pre-haptens
 - Human liver microsomes have shown to be a useful addition to the assays for chemicals requiring enzymatic activation

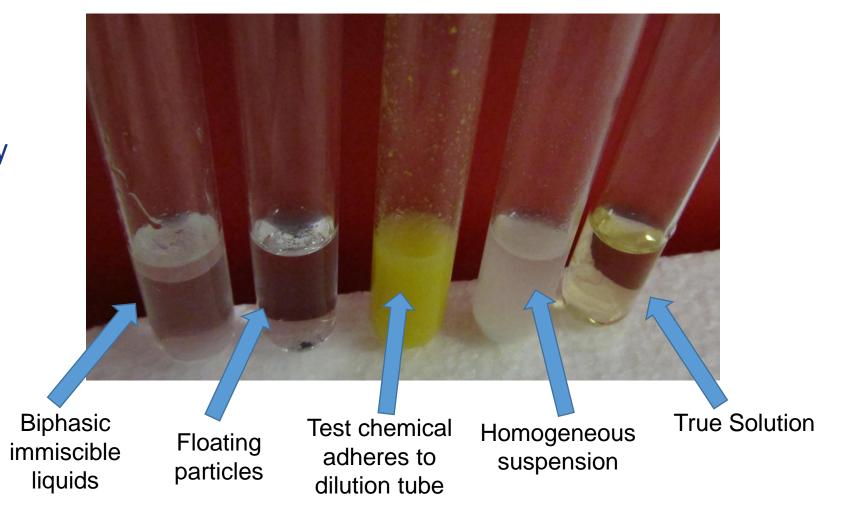
Testing Mixtures and Formulations

Evaluating the impact of complex matrices on the ability to detect sensitizers spiked into the matrix Application of the KeratinoSens Assay for Prediction of Dermal Sensitization Hazard for Botanical Cosmetic Ingredients

D. Gan¹, K. Norman², N. Barnes², H. Raabe², C. Gomez¹, and J. Harbell¹ ¹Mary Kay Inc. Dallas, TX, ²IIVS, Gaithersburg, MD

Presented at the 52nd Meeting of the Society for Toxicology, San Antonio, TX, March 12, 2013

Using In Vitro Assays, the Direct Peptide Reactivity Assay (DPRA), KeratinoSens™ Assay (KS), and Human Cell Line Activation Test (h-CLAT) to Assess Skin Sensitization Potential of Electronic Cigarette Liquids


Abstract #3374

R. D. Leverette¹, B. Bombick¹, K. Fowler¹, D. Breheny², M. Gaça², A. Miller³, G. Mun³, K. Norman³, A. Gamson³, M. Lamm³, R. Pham³, N. Sadowski³, V. Diersen³, D. Sheehan³: ¹RAI Services Company, Winston-Salem, NC USA; ²British American Tobacco (Investments) Ltd., Southampton, UK; ³Institute for In Vitro Sciences, Inc., Gaithersburg, MD USA

Common Solubility Observations

KEY = Bioavailability

Is chemical available to cells?

Regulatory Acceptance OECD Test Guidelines

In Chemico Skin Sensitisation

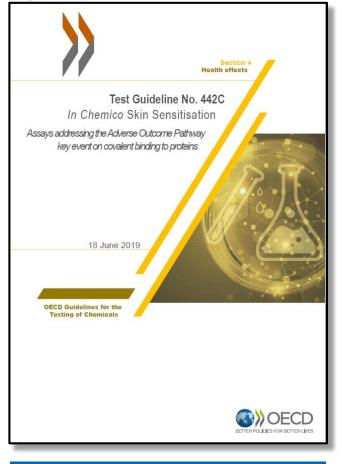
442C Adopted: 18 June 2019

Assays addressing the Adverse Outcome Pathway key event on covalent binding to proteins

442D Adopted: 25June 2018

KEY EVENT BASED TEST GUIDELINE 442D

In vitro skin sensitisation assays addressing the AOP key event on keratinocyte activation


442E

KEY EVENT-BASED TEST GUIDELINE

Adopted: 25 June 2018

In vitro skin sensitisation assays addressing the key event on activation of dendritic cells on the adverse outcome pathway for skin sensitisation

OECD Guidance Document No. **256** (2016) - on the reporting of Defined Approaches to be used within IATA for skin sensitisation

Skin sensitization DA/IATA-OECD Guidance Document No. 256 (2016)

UNITED STATES	
ENVIRONMENTAL PROTECTION	
ON THE TOP	
ENTAL PROTECTIC	

Cas	Purpose	
1	An Adverse Outcome Pathway-based "2 out of 3" integrated testing strategy approach to skin hazard identification (BASF)	Hazard identification
2	Sequential Testing Strategy (STS) for hazard identification of skin sensitisers (RIVM)	Hazard identification
3	A non-testing pipeline approach for skin sensitisation (G. Patlewicz)	Hazard identification
4	Stacking meta-model for skin sensitisation hazard identification (L'Oréal)	Hazard identification
5	Integrated decision strategy for skin sensitisation hazard (ICCVAM)	Hazard identification
6	Consensus of classification trees for skin sensitisation hazard prediction (EC- JRC)	Hazard identification
7	Sensitizer potency prediction based on Key event $1 + 2$: Combination of kinetic peptide reactivity data and KeratinoSens® data (Givaudan)	Potency prediction
8	The artificial neural network model for predicting LLNA EC3 (Shiseido)	Potency prediction
9	Bayesian Network DIP (BN-ITS-3) for hazard and potency identification of skin sensitizers (P&G)	Potency prediction
10	Sequential testing strategy (STS) for sensitising potency classification based on in chemico and in vitro data (Kao Corp)	Potency prediction
11	Integrated testing strategy (ITS) for sensitising potency classification based on in silico, in chemico, and in vitro data (Kao Corporation)	Potency prediction
12	DIP for skin allergy risk assessment (SARA) (Unilever)	Potency prediction

CRITICAL REVIEWS IN TOXICOLOGY, 2018 https://doi.org/10.1080/10408444.2018.1429385

REVIEW ARTICLE

Non-animal methods to predict skin sensitization (I): the Cosmetics Europe database*

Sebastian Hoffmann^a, Nicole Kleinstreuer^b, Nathalie Alépée^c, David Allen^d, Anne Marie Api^e, Takao Ashikaga^ft, Elodie Clouet^g, Magalie Cluzel^h, Bertrand Desprezⁱ, Nichola Gellatlyⁱ‡, Carsten Goebel^k, Petra S. Kern¹, Martina Klaricⁱ, Jochen Kühnl^m, Jon F. Lalko^e§, Silvia Martinozzi-Teissier^c, Karsten Mewesⁿ, Masaaki Miyazawa^o, Rahul Parakhia^e, Erwin van Vliet^p, Qingda Zang^d and Dirk Petersohnⁿ

^aseh consulting + services, Paderborn, Germany; ^bNIH/NIEHS/DNTP/NICEATM, Research Triangle Park, NC, USA; ^cL'Oréal Research and Innovation, Aulnay-sous-Bois, France; ^dILS, Research Triangle Park, NC, USA; ^eThe Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA; ¹Shiseido Global Innovation Center, Hayabuchi, Kanagawa, Japan; ⁹Pierre Fabre, Toulouse, France; ^hLVMH, St Jean de Braye, France; ⁱCosmetics Europe, Brussels, Belgium; ^jUnilever, Bedford, United Kingdom; ^kCoty, Darmstadt, Germany; ⁱProcter and Gamble Services Company NV, Strombeek-Bever, Belgium; ^mBeiersdorf AG, Hamburg, Germany; ⁿHenkel AG and Co. KG, Düsseldorf, Germany; ^oKao Corporation, Tochigi, Japan; ^pServices and Consultations on Alternative Methods (SeCAM), Magliaso, Switzerland

CRITICAL REVIEWS IN TOXICOLOGY,	2018
https://doi.org/10.1080/10408444.20	18.1429386

REVIEW ARTICLE

Non-animal methods to predict skin sensitization (II): an assessment of defined approaches***

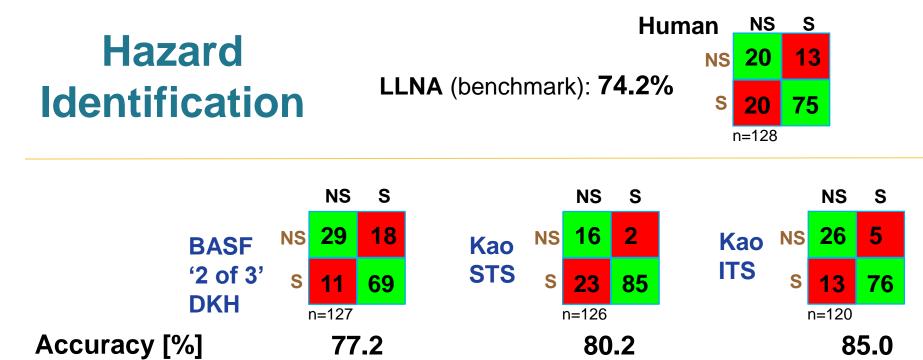
Nicole C. Kleinstreuer^a, Sebastian Hoffmann^b, Nathalie Alépée^c, David Allen^d, Takao Ashikaga^e*, Warren Casey^a, Elodie Clouet^f, Magalie Cluzel⁹, Bertrand Desprez^h, Nichola Gellatlyⁱ, Carsten Göbelⁱ, Petra S. Kern^k, Martina Klaric^h, Jochen Kühnl¹, Silvia Martinozzi-Teissier^c, Karsten Mewes^m, Masaaki Miyazawaⁿ, Judy Strickland^d, Erwin van Vliet^o, Qingda Zang^d and Dirk Petersohn^m

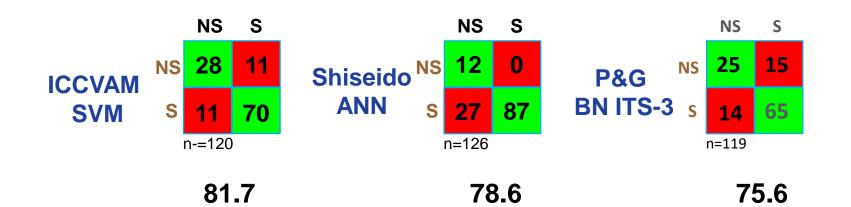
^aNIH/NIEHS/DNTP/NICEATM, Research Triangle Park, NC, USA; ^bSEH Consulting + Services, Paderborn, Germany; ^cL'Oréal Research & Innovation, Aulnay-sous-Bois, France; ^dILS, Research Triangle Park, NC, USA; ^eShiseido, Yokohama-shi, Kanagawa, Japan; ¹Pierre Fabre, Toulouse, France; ^gLVMH, St Jean de Braye, France; ^hCosmetics Europe, Brussels, Belgium; ¹Unilever, London, UK; ¹Coty, Darmstadt, Germany; ^kProcter & Gamble Services Company NV, Strombeek-Bever, Belgium; ¹Beiersdorf AG, Hamburg, Germany; ^mHenkel AG & Co. KGaA, Düsseldorf, Germany; ⁿKao Corporation, Haga, Tochigi, Japan; ^oServices & Consultations on Alternative Methods (SeCAM), Magliaso, Switzerland

Taylor & Francis Taylor & Francis Group

Check for updates


```
OPEN ACCESS
```




*LLNA is ~70-80% reproducible for hazard

Predicting LLNA Hazard							
Defined	BASF 2/3	Kao	Kao ITS	ICCVAM	Shiseido	Shiseido	P&G BN
Approach:	(DKH)	STS		SVM	ANN	ANN	ITS-3
				(LLNA)	(D_hC)	(D_hC_KS)	
Ν	127	126	120	120	126	126	119
Accuracy (%)*	70.1	77.8	79.2	88.3	76.2	81.0	83.2
Sensitivity (%)	72.3	92.6	85.6	93.3	90.4	97.9	83.2
Specificity (%)	63.6	34.4	60.0	73.3	34.4	31.3	83.3
BA (%)	68.0	63.5	72.8	83.3	62.4	64.6	83.3

Kleinstreuer et al. 2018 Crit Rev Tox

US Regulatory Progress

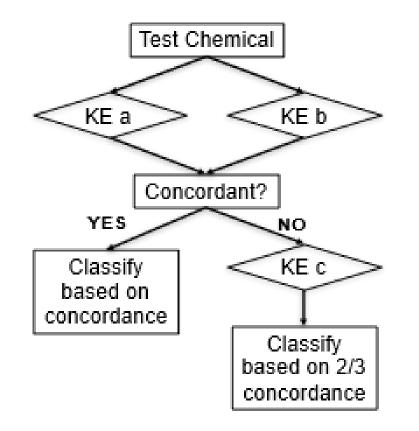
US EPA Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing

- Joint policy between Office of Pesticide Programs (OPP) and Office of Pollution Prevention and Toxics (OPPT)
- Applies to pesticide active ingredients, inerts, and single chemicals regulated under amended TSCA
- Two DAs currently accepted: "AOP 2 out of 3" and "KE 3/1 STS"
- Includes assays covered by the respective KE-based OECD TGs
- Policy to be updated to accept more DAs as the OECD GL work develops

Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing

> DRAFT FOR PUBLIC COMMENT April 4, 2018

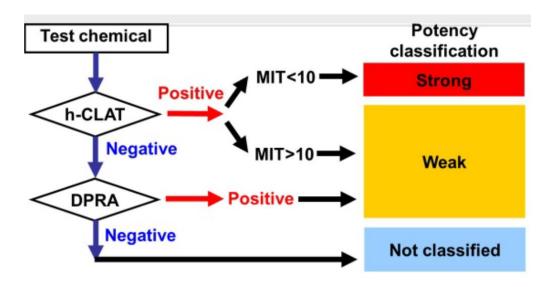
EPA's Office of Chemical Safety and Pollution Prevention:

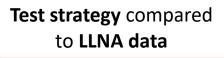

Office of Pesticide Programs Office of Pollution Prevention and Toxics

https://www.epa.gov/pesticides/epa-releases-draft-policy-reduce-animal-testing-skin-sensitization

Defined Approach "2 out of 3"

AOP "2 out of 3" - Hazard Identification




	Test strategy compared to human data	
	Sensitivity	90%
N=213 (151 sensitizers,	Specificity	100%
64 non-sensitizers)	Accuracy	91%

Bauch et al. Regul. Toxicol. Pharmacol 2012, (63) 489-504

Defined Approach KE 3/1 STS

KE 3/1 STS - Potency identification

Over prediction	11%
Under prediction	18%
Accuracy	71%

N=101 (76 sensitizers, 25 non-sensitizers)

Nukada et al. Toxicology in Vitro 2013, (27) 609-618

Skin Sensitization: Future Opportunities

What further info do we need from non-animal test methods?

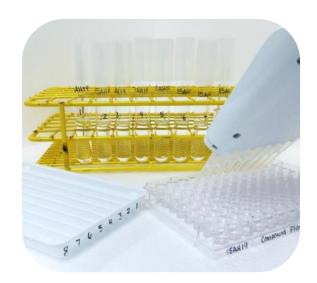
Skin kinetics Potency Complex mixtures/formulations

Emerging Opportunities kinetic DPRA

SENS-IS

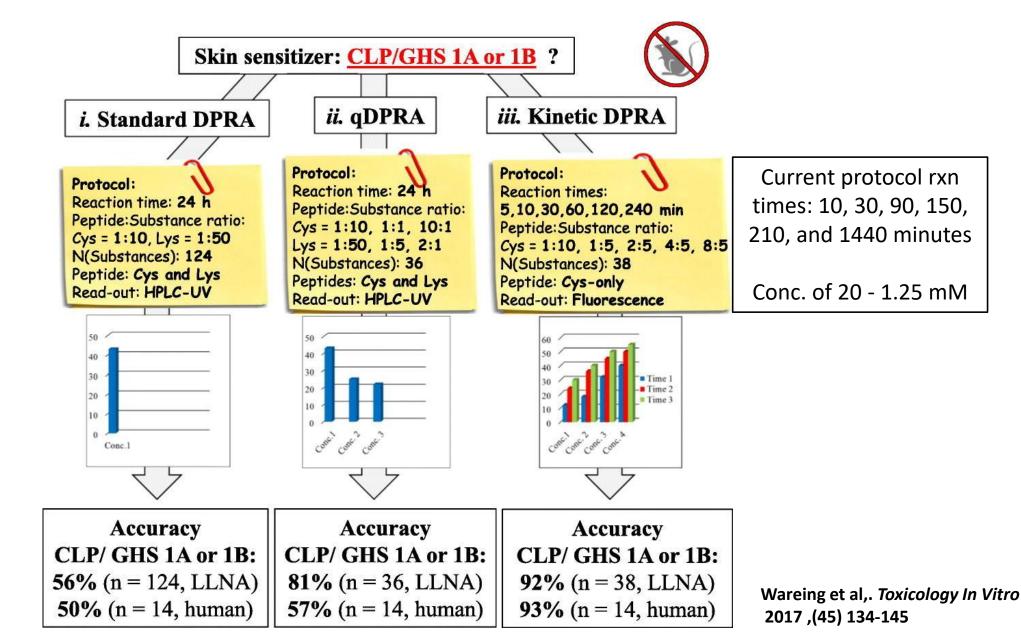
EpiSensA

GARD[™]skin



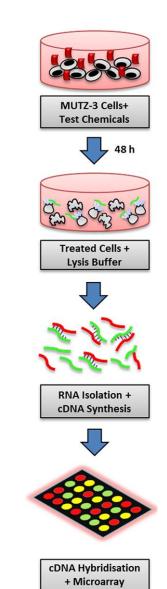
 $\log K_{ow} > 3$

Kinetic DPRA (kDPRA)


- *In chemico* method
- Can determine **potency** of chemicals

GHS 1A/1B

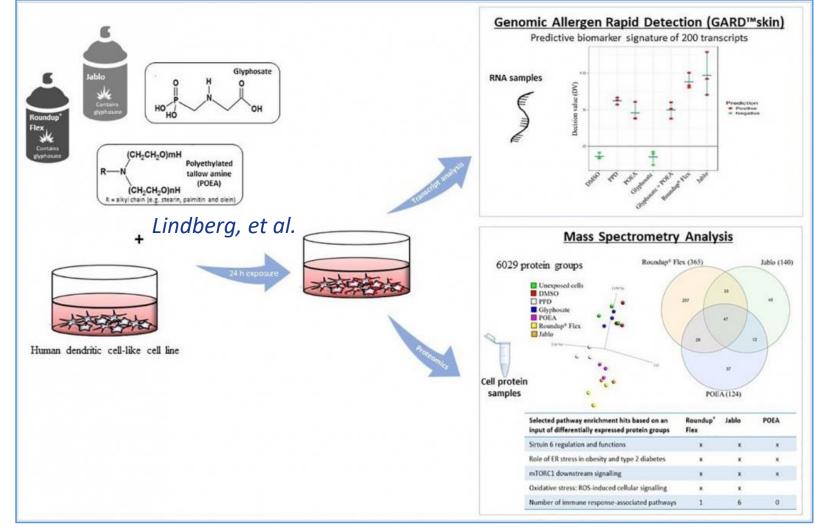
Kinetic DPRA (kDPRA)


Genomic Allergen Rapid Detection (GARD[™]skin)

Cell based –MUTZ-3 cells

The readout of the assay is based on differentially regulated transcriptional changes of selected genomic biomarkers, referred to as the GARD prediction signature (GPS). Probes over 200 genes

Prediction model


Classifications of unknown compounds as sensitizers or non-sensitizers are performed with a support vector machine (SVM) model, trained on the 38 reference chemicals used for GARD development

Analysis

GARD[™]skin

An integrated transcriptomic- and proteomic-based approach to evaluate the human skin sensitization potential of glyphosate and its commercial agrochemical formulations

Lindberg, et al., Journal of Proteomics, 6 Feb 2020, https://doi.org/10.1016/j.jprot.2020.103647

SENS-IS and EpiSensA RhE-based gene expression platforms

Toxicology in Vitro Volume 32, April 2016, Pages 248-260

SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: Reproducibility and predictivity results from an inter-laboratory study

Françoise Cottrez ^a, Elodie Boitel ^a, Jean-Claude Ourlin ^b, Jean-Luc Peiffer ^b, Isabelle Fabre ^b, Imène-Sarah Henaoui ^{c, d}, Bernard Mari ^{c, d}, Ambre Vallauri ^{c, d}, Agnes Paquet ^{c, d}, Pascal Barbry ^{c, d}, Claude Auriault ^a, Pierre Aeby ^e, Hervé Groux ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\cong}$

- ^a ImmunoSearch, Grasse, France
- ^b Agence nationale de sécurité du médicament, Vendargues, France
- ° CNRS, Institute of Molecular and Cellular Pharmacology, Sophia Antipolis, France
- ^d University of Nice Sophia Antipolis, Nice, France
- e Independant Consultant, Marly, Switzerland

Toxicology in Vitro Volume 27, Issue 8, December 2013, Pages 2213-2224

Development of a new *in vitro* skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis

Kazutoshi Saito, Yuko Nukada, Osamu Takenouchi, Masaaki Miyazawa 🎗 🛤, Hitoshi Sakaguchi, Naohiro Nishiyama

Kao Corporation, Safety Science Research Laboratories, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan

Received 6 January 2013, Accepted 22 August 2013, Available online 30 August 2013.

Check for updates

Show less ∧

https://doi.org/10.1016/j.tiv.2013.08.007

Get rights and content

Highlights

- Gene expression profile was examined in RhE model.
- Five cellular stress related genes were significantly upregulated by DNFB and OXA.
- Predictive performance of ATF3 gene displayed 100% accuracy to animal testing.

SENS-IS Assay

- Test system: RhE model Reconstructed human Epidermis (3D)
 - Includes skin kinetics minimize solubility issues
- Analysis platform: Gene expression measurements (RT-PCR)
- Prediction model:
 - Irritation
 - Positive if at least 15/24 skin irritation genes are significantly induced
 - Sensitization
 - Positive if 7/17 genes in ARE group and/or 7/21 genes on the SENS-IS gene group are significantly induced
 - (provided that <20 Irritation genes are over-expressed)

SENS-IS Assay: Advantages

- Applicable to low solubility compounds
- Ideal for topical application of complex formulations
- May support predictions using weight/surface area based data
- May be applicable to mixtures and finished products

(Cottrez F et al., *Toxicology in Vitro*, Volume 62, February 2020, 104644, Online 2019)

	Human	LLNA
n	130	150
Sensitivity	95.8%	97.75
Specificity	96.5%	95.2%
PPV	97%	96.65
NPV	95%	96.75
Accuracy	96%	96.6%

150 test chemicals were evaluated at ImmunoSearch in at least two independent experiments. Cooper statistics values (Sensitivity, Specificity and Accuracy) were calculated for the SENS-IS assay using human (see human column) and LLNA (see LLNA column) data from the literature as references.

"n": Number of results included in the calculation (depending on available reference data); "PPV »: Positive Prediction Value; «NPV»: Negative Prediction Value.

SENS-IS Assay

Assay steps:


1-Chemical application on Episkin

2-Washing

3-Post-incubation and sampling

5-RT-PCR quantification

4-Tissue lysing and cDNA preparation

1 ton

6-Results analysis

- Validation assay by analysis of:
- negative control (Olive oil, PBS, DMSO)
- irritant control (5% SLS)
- two sensitizer controls (50% HCA, 1% TNBS) Irritation : positive response if at least 15/24 genes are significantly induced

Sensitization : a molecule is classified as positive if at least:

- 7/17 genes in ARE genes group and/or
- 7/21genes in SENS-IS genes group are significantly induced

Potency assessment : -positive up to 0.1% : extreme -positive up to 1% : strong -positive up to 10% : moderate -positive up to 50% : weak

Thank You Questions ?

Advancing Science & Animal Welfare Together For further information contact: Rishil J. Kathawala: rkathawala@iivs.org Victoria (Tori) Diersen: vdiersen@iivs.org Hans Raabe: hraabe@iivs.org