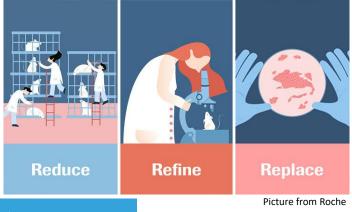


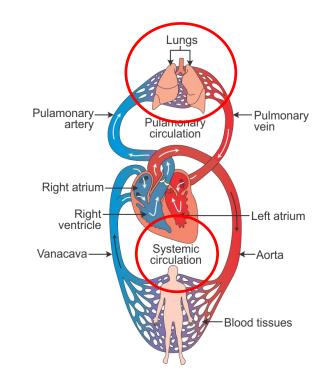
	Ê p		mmi	

ALTERNATIVES FOR INHALATION TOXICITY TESTING CASE STUDIES (VITROCELL[®] 6/4 & 24/48)

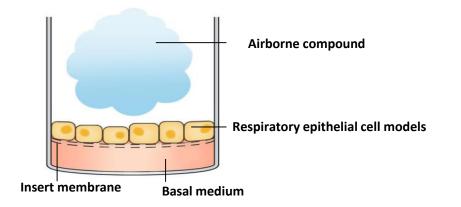
WebEx, April 30th

- Strategic research center of Flanders
- Funded (1/3) by the Flemish Government
- Headquarter located in Mol, Belgium




INHALATION TOXICITY TESTING

BACKGROUND


Picture from PETA

IN VITRO AIR-LIQUID INTERFACE (ALI) EXPOSURE

Relevant respiratory cell models Realistic inhalation exposure systems Proper dosimetry techniques

VITO ALI PLATFORM

4 ALI EXPOSURE SYSTEMS

1. VITROCELL[®] 6/4 module

- Electrostatic depositor
- 4 replicates

2. VITROCELL® 24/48 module

- Simultaneous exposure negative, positive control, 6 concentrations compound
- 6 replicates for each condition
- 3. VITROCELL® Cloud 12 module
 - 3 replicates control, 8 replicates compound, 1 microbalance

4. NAVETTA

- Patented in-house co-developed module (Frijns *et al.*, 2017)
- 4 replicates

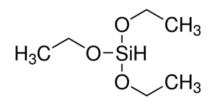
Adapters 12- and 24-well sizes / stainless steel inserts

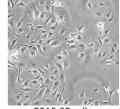
29/04/2020

©VITO – Not for distribution

GOAL

- In vitro approaches for assessing respiratory toxicity of chemicals would provide useful information to product development and risk management decisions
- INSPIRE project: demonstrate utility of an *in vitro* system
 - to predict the likelihood of a chemical to cause effects on the human respiratory tract
 - to rank chemical toxicity

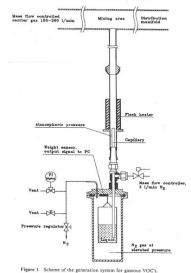



Demonstrate performance of *in vitro* system using triethoxysilane (TES)

Optimization of TES vapor generation
 Generation of TES vapor and dry exposure of lung cells

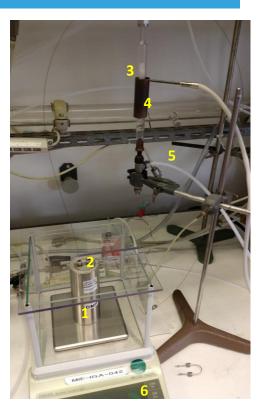
TES

- Industrial chemical
- GHS category 2 inhalation toxicant (~rat acute inhalation toxicity testing)
- Not stable, highly reactive with water


VITROCELL 6/4®

OPTIMIZATION OF TES VAPOR GENERATION

- TES generation in dry clean air using a capillary dosage system (Goelen et al. 1992)
- Stability of compounds monitored online by GC-FID (gas chromatography-flame ionization detector) and THC (total hydrocarbon) analyzer


OPTIMIZATION OF TES VAPOR GENERATION

- 1. Recipient with TES on analytical balance
- 2. Pressure on closed recipient
- 3. Outgoing liquid retained by cotton plug
- 4. Liquid evaporated by local heating element
- 5. TES vapor transferred by dry air flow to glass distribution line
- 6. Weight loss monitored

Stability monitored by GC-FID and THC analyzer

Different concentrations obtained by altering weight loss and air flows (>6 ppm) and use of measured value of THC analyzer (<6 ppm)

Splitter mass flow controller needed for concentrations <6 ppm

29/04/2020

©VITO – Not for distribution

GENERATION OF TES VAPOR AND DRY EXPOSURE OF LUNG CELLS – STUDY DESIGN

ALI exposure system	Capillary dosage unit coupled to VITROCELL [®] 6/4			
Respiratory cell model	BEAS-2B (normal human bronchial epithelial cell line)			
Type of inserts	Precoated Corning [®] Transwell [®] polyester membrane inserts (Sigma-Aldrich), pore size 0.4 μm, diameter 24 mm (6-well)			
Seeding density on inserts	15000 cells/cm ²			
Growth protocol	48 hours (h) submerged growth, exchange BEGM for BEBM +/- 16 h prior ALI exposure			
Flow/insert	3 millilitre per minute (mlpm)			
Nozzle height	3 mm			
Conditioning	Temperature during exposure: 37 °C Dry exposure because of reactivity TES			

BEGM: Bronchial Epithelial Growth Medium (with supplements) BEBM: Bronchial Epithelial Basal Medium Coating: 10 μg/ml human plasma fibronectin, 30 μg/ml PureCol™, and 10 μg/ml bovine serum albumin dissolved in BEBM

29/04/2020

GENERATION OF TES VAPOR AND DRY EXPOSURE OF LUNG CELLS – STUDY DESIGN

Concentrations test conditions	 Incubator control (IC): inserts without apical medium kept in the incubator for 24 h, as control for clean air (CA) CA Positive control: 12 ppm nitrogen dioxide (NO₂) Lipopolysaccharide (LPS): submerged exposure to 20 µg/ml as positive control for cytokine secretion TES vapor: 0.72, 25, 85 ppm (based on LC50 data: >500 and < 1300 mg/m³) 		
Exposure time	1 h		
Submerged post-exposure time	20-24 h for cell viability/inflammation; 30 minutes (min) for cytotoxicity		
Biological endpoints (and assays)	Cell viability (PrestoBlue™) Cytotoxicity (lactate dehydrogenase, LDH) Inflammation: IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IFN-β, TNF-α (Meso Scale Discovery, V-PLEX)		

GENERATION OF TES VAPOR AND DRY EXPOSURE OF LUNG CELLS – STUDY DESIGN

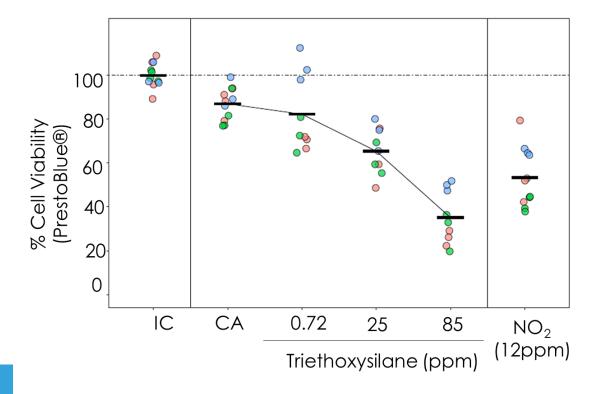
Calculating delivered/cellular dose	ICP-AES (inductively coupled plasma-atomic emission spectroscopy) Silicium standard in 5% TMAH (tetramethylammoniumhydroxide); digestion in TMAH			
Replicates/run	4			
Runs	3 independent biological experiments			
Existing <i>in vivo</i> data?	 Acute inhalation toxicity – GHS category 2 Acute oral toxicity – GHS category 4 Skin irritation – GHS category 2 Eye irritation – GHS category 1 			
Known Mode of Action (key events)	 Cellular absorption and hydrolysis of TES Cell death Loss of epithelial barrier Secretion of inflammatory cytokines Pulmonary oedema / hemorrhage 			

DELIVERED CONCENTRATION (ICP-AES, DIRECT)

Exposure concentration	Concentration of TES in cells (µg)			
TES (ppm)	N=1	N=2	N=3	Avg
0.72	/	/	/	/
25	2.6	3.3	3.8	3.2
85	15.4	17.4	20.8	17.9

Delivery efficiency: 14%

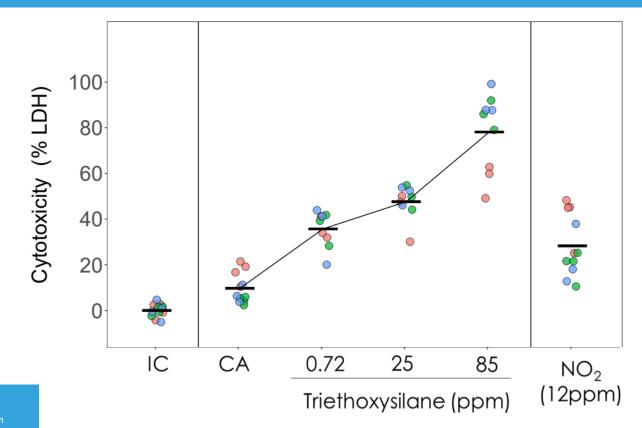
Exposure concentration	Concentration of TES in medium (µg)			
TES (ppm)	N=1	N=2	N=3	Avg
0.72	/	/	/	/
25	2.8	2.5	2.3	2.5
85	5.9	6.3	5.8	6.0


29/04/2020 ©VITO – Not for distribution

🧡 vito

VITO CASE 1A: TRIETHOXYSILANE

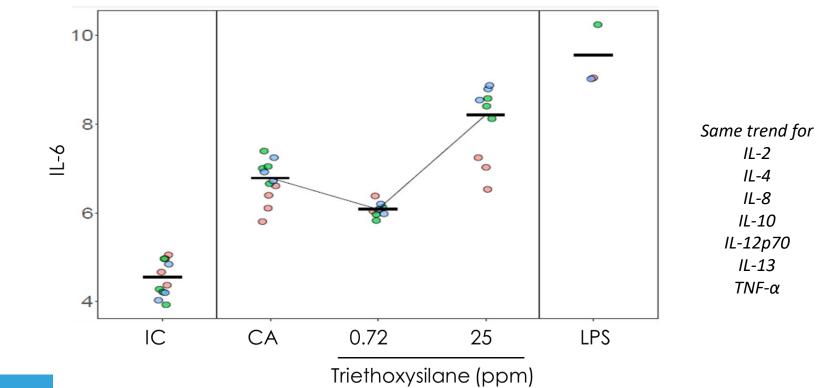
CELL VIABILITY (PRESTOBLUE[™], 20-24 H POST-EXPOSURE)


29/04/2020

©VITO – Not for distribution

CASE 1A: TRIETHOXYSILANE

CYTOTOXICITY (LDH ASSAY, 30 MIN POST-EXPOSURE)

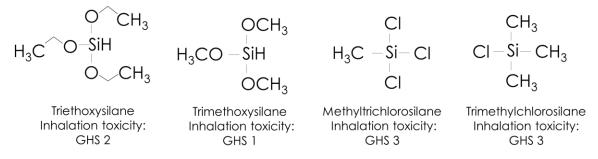

29/04/2020 ©VITO – Not for distribution

vito

CASE 1A: TRIETHOXYSILANE

INFLAMMATION (CYTOKINE RELEASE, 20-24 H POST-EXPOSURE, MSD)

29/04/2020 ©VITO – Not for distribution


vito

NEXT STEPS 2020

- Additional work is underway to test other silane compounds
- Determine if this *in vitro* system can detect the decrease in toxicity that correlates with increasing carbon length

 Determine advantages of using a 2D cell line (BEAS-2B) versus a 3D human reconstructed tissue model

BACKGROUND

- PETRALI project
- Subject to regulatory registration requirements!

BUT

- Volatile to semi-volatile
- Low aqueous solubility

AND

Many individual constituents with a range of different physicochemical properties

SO

Difficult to test 'in vitro' for inhalation toxicity

29/04/2020

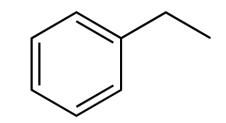
©VITO – Not for distribution

CASE 2: PETROLEUM SUBSTANCES AND ITS CONSTITUENTS

GOAL

- Develop alternative method and replace *in vivo* animal tests for prediction of human *in vivo* inhalation toxicity
- ✓ Development and validation of a generation facility to obtain vapors✓ Optimization & validation of an ALI exposure system

E∕xonMobil



SINGLE COMPOUND TESTING

Demonstrate performance of ALI exposure method using EB

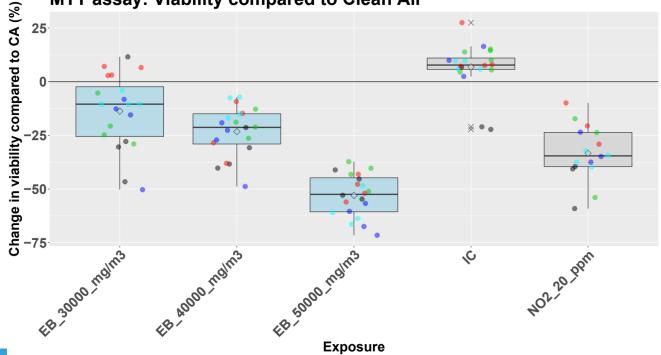
EB

- Mono-aromatic hydrocarbon constituent of petroleum
- Occupational exposure during refinery operations
- H304 and H332
- DNEL

Picture from ExxonMobil

HEADSPACE GC-MS (STAINLESS STEEL INSERTS)

Avg. measured EB exposure concentration +/- STDEV (mg/m ³)	Avg. delivered EB dose +/- STDEV (μg)		
51562 +/- 228	22.7 +/- 3.5		
40989 +/- 181	14.3 +/- 4.3		
30989 +/- 137	9.1 +/- 2.9		

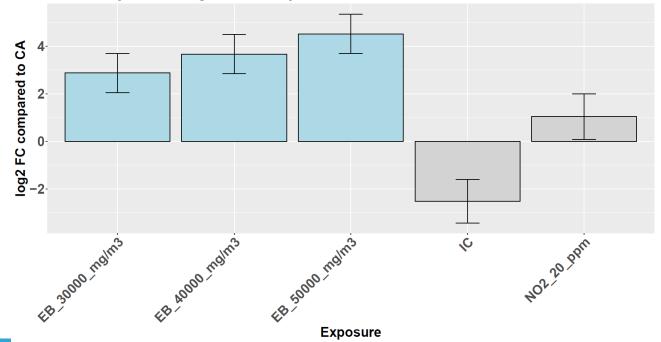

Delivery efficiency: 0.1%

CELL VIABILITY

MTT assay: Viability compared to Clean Air

29/04/2020

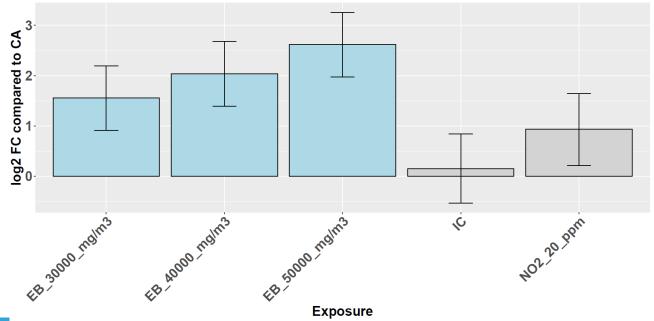
©VITO – Not for distribution


Confirmed in LDH assay

INFLAMMATION (GENE EXPRESSION)

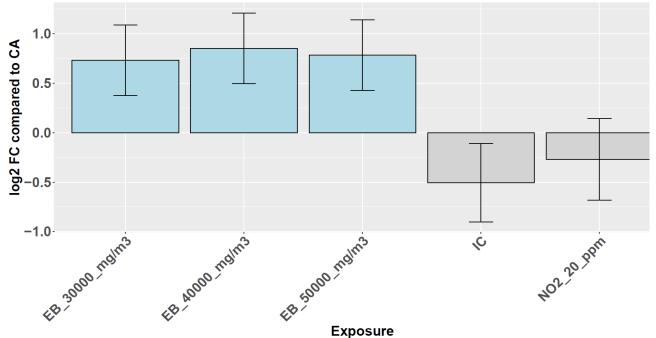
Gene expr. IL8: log2 FC compared to Clean Air

29/04/2020 ©VITO – Not for distribution


Same trend for CCL2 and IL6

INFLAMMATION (PROTEIN SECRETION)

Protein expression: log2 FC compared to Clean Air Normalised for viability (MTT assay)


29/04/2020

OXIDATIVE STRESS (GENE EXPRESSION)

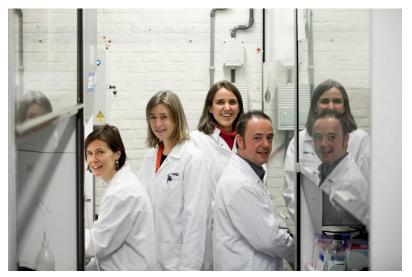
Gene expr. SOD2: log2 FC compared to Clean Air

29/04/2020 ©VITO – Not for distribution

HMOX1 not a relevant marker for EB exposure₂₅

CONCLUSIONS

- Successful optimization of ALI exposure system for a single substance EB
- Experimental conditions optimized to achieve a deposition efficiency that resulted in dose-related biological changes
- The data demonstrated consistency in effect levels when comparing cell viability in the ALI experiments with known *in vivo* effects.
- Publication ready for submission
- Other cases: gasoline (SOT ePoster #1177) & naphthalene


ACKNOWLEDGEMENTS

- Monita Sharma
- Amy J. Clippinger

E‰onMobil

- Lize Deferme
- Katy O Goyak
- Marusia A Popovech

Evelien Frijns (aerosol expert) evelien.frijns@vito.be Sandra Verstraelen (biomolecular expert) sandra.verstraelen@vito.be

Researchers: Frederick Maes, Lieve Geerts, Sylvie Remy, Hilda Witters, Christine Vanhoof Technicians: An Jacobs, Karen Hollanders, Jo Van Laer, David Poelmans, Rob Brabers, Masha Van Deun, Diane Bertels, Wilfried Brusten

Business developer: Sven Vercauteren