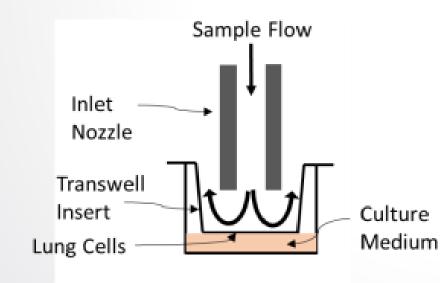


Toxicity Screening of Volatile Chemicals Using a Novel Air-Liquid Interface *In Vitro* Exposure System

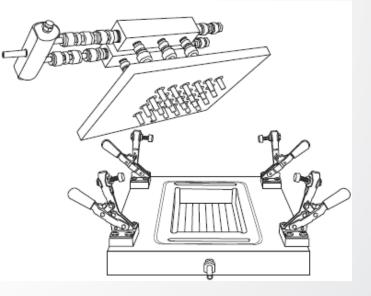
Alternatives for Inhalation Toxicity Testing Meeting

Adam Speen and Mark Higuchi

EPA Inhalation Toxicology Facilities Branch



Disclaimer: The research described in this presentation has been reviewed by the Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does the mention of trade names of commercial products constitute endorsement or recommendation for use.


€PA

Main Objective

Utilize direct exposure of volatile chemicals to cells at ALI in order to generate transcriptomic data capable of identifying concentration-dependent mechanism/mode-of-action.

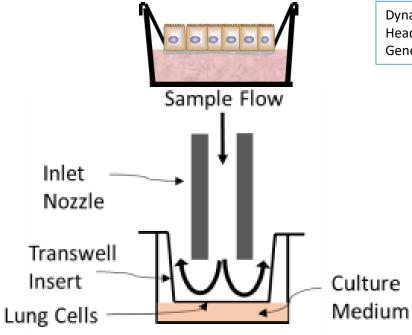
24-Well Format

VOC Exposure – Study Objectives

- Develop a workflow for medium-throughput screening of volatile chemicals in concentration response for bioactivity using whole transcriptome targeted RNA-Sequencing (i.e. BioSpyder's TempO-Seq[™]).
- Assess the technical and biological reproducibility of transcriptomic data in an air-liquid interface cell culture dynamic exposure model.
- Evaluate the ability of the transcriptomic data to identify concentration-dependent changes in mechanism/mode-of-action.
- Evaluate the ability of the transcriptomic data from cell culture models to group chemicals by similar bioactivity profiles for potential grouping and read across applications.
- Evaluate the use of ACGIH TLV as a guide for concentration test range.

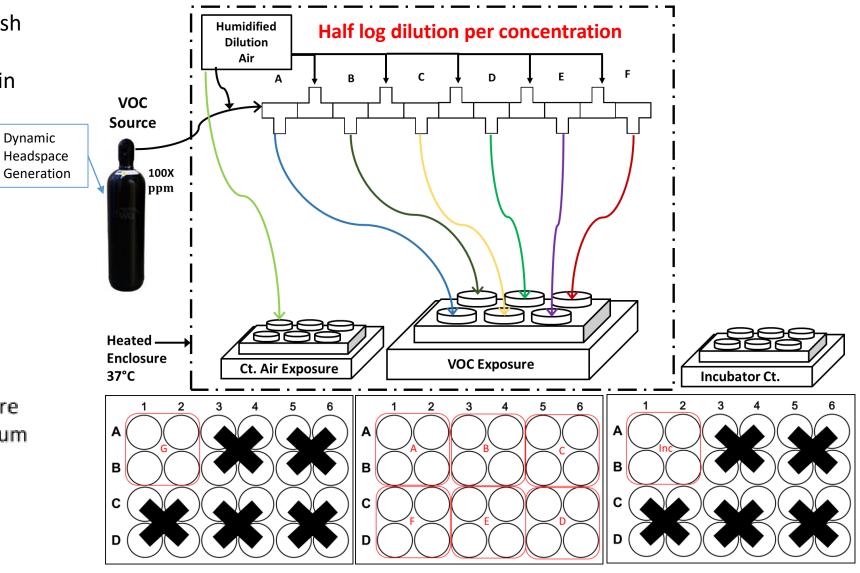
SEPA

Overview: Volatile Chemical Screening with HTTr


Cell Types	Primary Human Bronchial Epithelial Cells* BEAS-2B cells		
Test Chemical	1,3-Butadiene Acrolein Formaldehyde	Acetaldehyde Trichloroethylene* 1-Bromopropane*	Carbon Tetrachloride* Dichloromethane*
Exposure Regimen	6 concentrations, sham control, incubator control		
Exposure Duration	 2 hours, Assays conducted 4h post exposure 		
Technical Replicates	 TempO-Seq, n=2; Viability, n=2; Cytotoxicity, n=4 		
Biological Replicates	 Exposures per cell type conducted over three days, n=3 		
Assay Formats	 TempO-Seq Cytotoxicity [LDH Release, Cell Titer Glo] 		

Exposure Overview

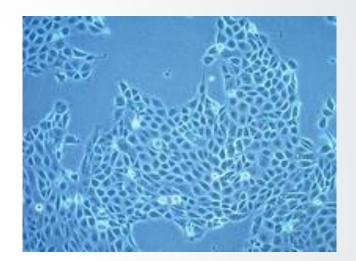
Pre-exposure

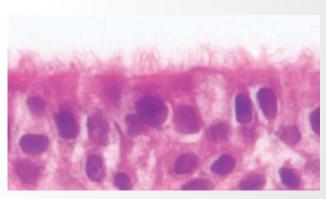

- All cells grown at ALI ٠
- Apical side **washed** and given fresh • media 2h prior to exposure
- HEPES buffered media to maintain • pH in low CO₂ environment

Dynamic

Post-exposure

- VOC exposure for 2h •
- Cells removed from CCES and • samples collected 4h postexposure


3 days of exposure per cell type



In Vitro Models

Cell Models

- **BEAS-2B:** human bronchial epithelial cell line
 - 3 day expansion schedule
- **HBEC:** Human primary bronchial epithelial cells
 - Obtained from healthy volunteers at the HSF at EPA
 - Approximately 28 days to grow and fully differentiate
 - Ciliated and mucus producing cells present
 - Multiple donors

VOCs of Interest

<u>Acrolein</u>

- Chemical intermediate for acrylic acid and certain biocide formulations
- Combustion product, component of cigarette smoke

1,3-Butadiene

- Product of processing petroleum and rubber products and combustion product **Acetaldehyde**
- Synthesis of perfumes, polyesters, dyes, and combustion product
- Fruit and fish preservative and flavoring agent

Formaldehyde

- Used in resins for manufacture of wood products and building materials
- Component of fertilizers and pesticides and combustion product

1-Bromopropane

• Component of degreasing solvents, adhesive sprays, and dry cleaning chemicals

Dichloromethane

• Component of paint finisher, stripping agents and pesticides

Trichloroethylene

Solvent for cleaning in metal manufacturing and an intermediate for refrigerants

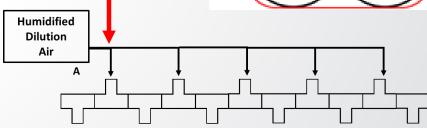
Carbon Tetrachloride

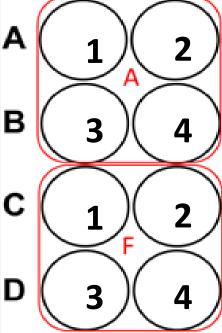
Component of refrigerants and propellants for aerosols

\$EPA

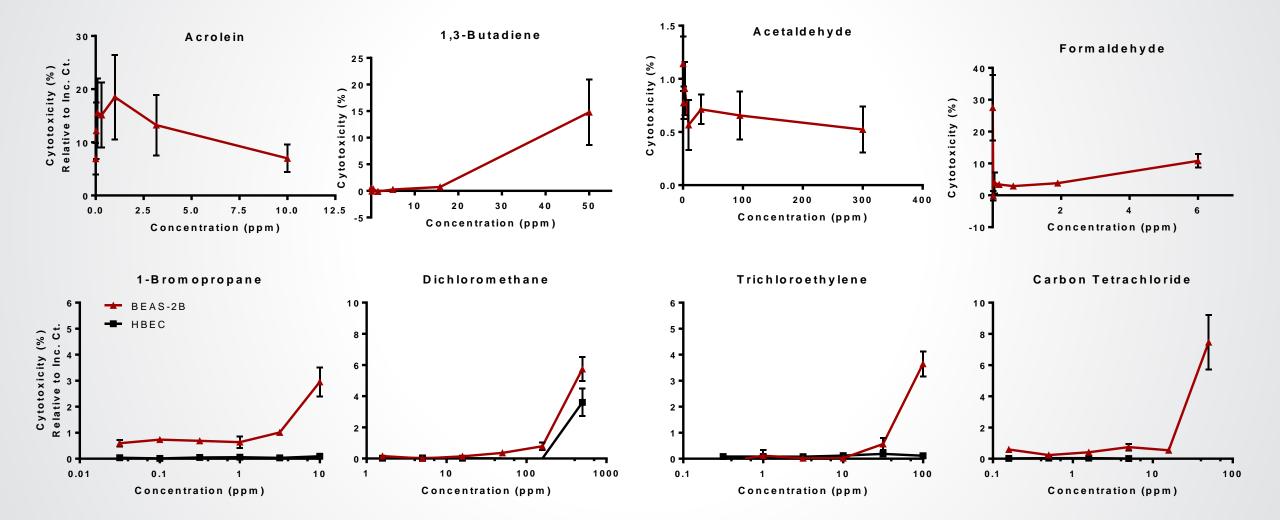
Analytical Endpoints

Molecular Assays

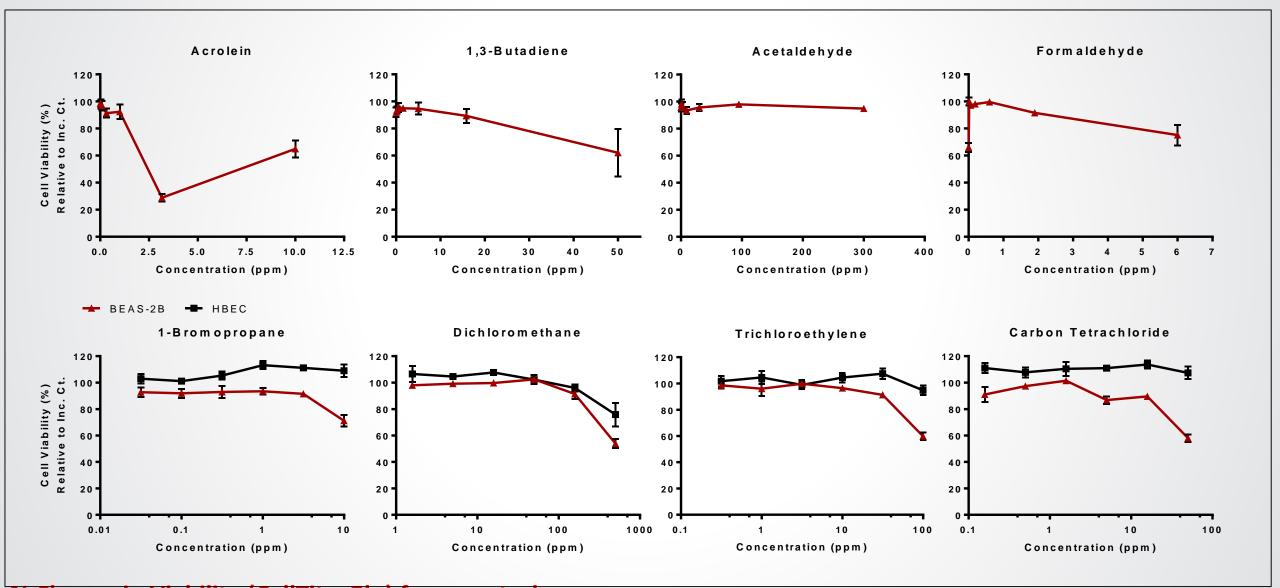

- LDH Cytotoxicity Assay Sampled in all wells
 - Measurement of cell membrane integrity by the release of LDH into the basolateral medium or apical wash (recent only)
- CellTiter-Glo Viability Assay


 Sampled from wells 1 and 2
 - Measures amount of ATP generated from viable cells
- - Whole transcriptome targeted RNA-Sequencing

Chemical Generation Endpoints


- Off-line GC/FID/ECD determinations of each concentration port just before entering CCES
- Analytical to Nominal ratio calculated based on total generated chemical and any losses due to transport

Sampled after each dilution



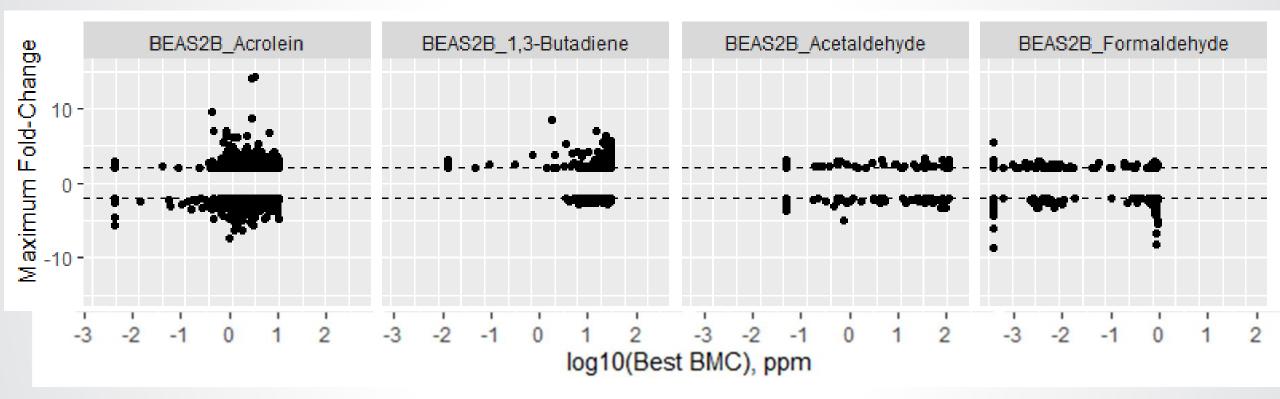
Cytotoxicity in Tested Concentrations of Volatile Chemicals

% Change in Cytotoxicity (LDH release) from control

Cell Viability in Tested Concentrations of Volatile Chemicals

% Change in Viability (CellTiterGlo) from control

Benchmark Dose Modeling

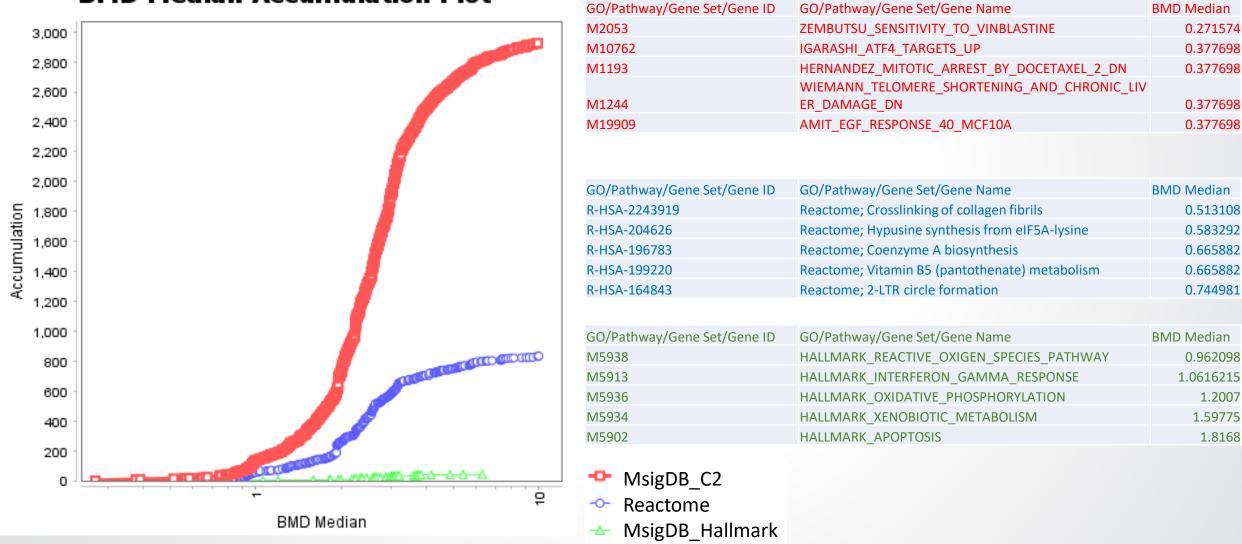

	BMD Express2.0
V 46	
A	
ONTP SEP	♦ Carizda Kic/mr

Parameter	Criteria ^a	
Pre-filter:	ANOVA $(p_{raw} < 0.05 \& FC \ge 2)$	
Models	Hill, Power, Linear, Poly2, Exponential 2 3 4 5	
BMR Factor:	BMD ₁₀	
Best Model Selection:	Lowest AIC	
Hill Model Flagging ^b :	<pre>'k' < 1/3 Lowest Positive Dose Discard Flagged Models</pre>	
Pathway Analysis:	Genes with BMD <= Highest Dose <u>></u> 3 <u>></u> 5% Gene Set Coverage	
Gene Set Collections ^c :	MsigDB_C2 MsigDB_Hallmark Reactome	
	^a Exploratory analysis – modeling criteria not finalized	

^c Gene Set Collections:

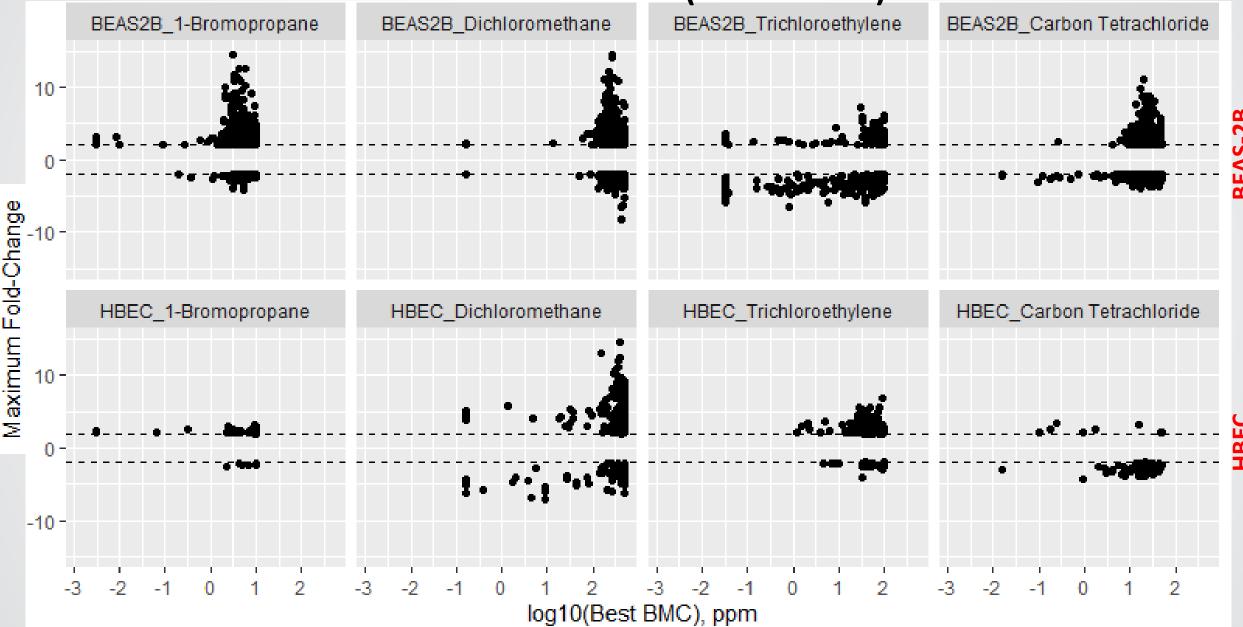
- MsigDB_C2: Expert curated from online pathway databases and biomedical literature. (n=5501)
- MsigDB_Hallmark: Well-defined biological states and coherent expression for relevance. (n=50)
- **Reactome:** Open-source, curated and peer reviewed pathway database with hierarchical pathway relationships in specific domains of biology. (n = 1764).

BMC Modeling Results for BEAS-2B cells exposed to Volatile Chemicals (Probe Level)


Measure of potency for the most sensitive change to a single target gene meeting the BMC modeling parameters.

BMC (BEAS-2B), TLV, and In Vitro Evidence Comparison

Chemical Name	Gene Set Collection	BEAS-2B, BMC of most sensitive gene set (ppm)	HBEC, BMC of most sensitive gene set (ppm)	ACGIH TLV	
	MSigDB_C2	0.647371			
Acrolein	MSigDB_H	1.33022		0.1ppm	
	Reactome	0.790052			
	MSigDB_C2	10.96505			
1,3-Butadiene	MSigDB_H	38.8237		10ppm	
	Reactome	32.00305			
	MSigDB_C2	245.115		25ppm	
Acetaldehyde	MSigDB_H	NA			
	Reactome	NA			
	MSigDB_C2	NA			
Formaldehyde	MSigDB_H	NA		0.3ppm	
	Reactome	actome NA			
Chemical Name	Chemical Name LC50 LOAEL N		NOAEL	LOAEL/NOAEL Conditions	
Acrolein	326 ppm (rats), 66 ppm (mice, 6h) ¹³	0.4 ppm (rats: metaplastic and inflammatory changes) ¹³	NR	subchronic: 6h/d, 5 d/wk, 13 wk	
1,3-Butadiene	129000 (rats), 122000 (mice, 2h) ²⁰	,625 ppm† (mice: alveolar epithelial hyperplasia) ²¹	8000 ppm* (rat: respiratory) ^{22,} 200 ppm† (mice, respiratory) ²¹	6h/d, 5 d/wk, *13 wk or †40wk	
Acetaldehyde	20,555 ppm (rats) ²³	404 ppm (rats: respiratory, 1 wk) ²⁴	152 ppm (rats: respiratory, 1 wk) ²⁴	6h/d, 7d/wk, 1 wk	
Formaldehyde	165 ppm (rats), 325 ppm (mice) ^{4,14} 2 ppm [#] (rat: increased nasal pathology) ^{15,}		1 ppm* (rat: increased nasal pathology) ^{17, 18, 19}	Acute repeated [#] : 6h/d for 1-4 days ¹⁴ , or 8h/day for 3-30 days ¹⁵ ; subchronic: *6h/d, 5 d/wk, 13 wk	


BMC Modeling Results for BEAS-2B cells exposed to Volatile Chemicals (Probe and Pathway Level)

BMD Median Accumulation Plot

BMC Modeling Results for BEAS-2B and Primary HBE cells exposed to

Volatile Chemicals (Probe Level)

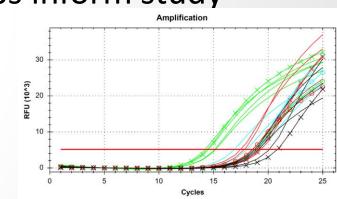
BMC (BEAS-2B and HBEC), TLV, and In Vitro Evidence Comparison

Chemical Name	Gene Set Collection	BEAS-2B, BMC of most sensitive gene set (ppm)	HBEC, BMC of most sensitive gene set (ppm)	ACGIH TLV	
	MSigDB_C2	1.98387	9.93639		
1-Bromopropane	MSigDB_H	2.88373	NA	10ppm	
	Reactome	2.62083	NA		
	MSigDB_C2	145.148	269.865		
Dichloromethane	MSigDB_H	231.7465 368.893		100ppm	
	Reactome	145.148	338.0995		
	MSigDB_C2	48.9539	25.9727	50ppm	
Trichloroethylene	MSigDB_H	NA	NA		
	Reactome	72.60365	32.0725		
Carbon Tetrachloride	MSigDB_C2	11.2604	NA		
	MSigDB_H	18.5872	NA	10ppm	
	Reactome	13.5783	NA		

Chemical Name LC50 LOAEL		LOAEL	NOAEL	LOAEL/NOAEL Conditions
1-Bromopropane $7000 - 14374 \text{ ppm } (\text{rats})^{1,2}$ $125 \text{ ppm } (\text{rat: nasal inflammation})^3$		250+ ppm (rat: nasal lesions, lung histopathology, death) ³	subchronic: 6h/d, 5 d/wk, 4-16 wks, often 13 wk	
Inchioromethane	$\begin{array}{c} 25143 \text{ ppm (rats), } 14292 \\ \text{ppm (mice)}^9 \end{array} \begin{array}{c} 500\text{-}1000 \text{ ppm (rats: hepatic changes, } \\ 2y)^{10,11} \end{array} \begin{array}{c} 200 \text{ ppm (rats: hepatic changes, 2 years)}^{12}\text{; } 4200 \text{ ppm (rats: hepatic changes, 13 wk)}^{11} \end{array}$		6h/d, 5 d/wk, 13 wk or 2 y	
Trichloroethylene		25 ppm** or 2.6 ppm*** (mice, acute: immunosuppression) ^{7,8}		acute vs repeated: ** single 3h exposure, ***3h exposure, repeated 5 d
		10 ppm† , ‡ (rat: body weight changes, enlarged liver with fatty changes) ⁵		subchronic: † 7h/day, 5d/wk, 6 mo; ‡ 24hr/d, 7d/wk, 13 wks

Comparison of *in vitro* to *in vivo* exposure studies

Chemical Name	BEAS-2B BMC (MSigDB_C2), ppm	HBEC BMC (MSigDB_C2), ppm	TLV (ppm)	LOAEL	NOAEL
Acrolein	0.647ppm		0.1ppm	0.4ppm	NR
Formaldehyde	NA		0.3ppm	404ppm	152ppm
1-Bromopropane	1.9839ppm	9.936ppm	10ppm	125ppm	250ppm
1,3-Butadiene	10.965ppm		10ppm	625ppm	8000ppm, 200ppm
Carbon Tetrachloride	11.2604ppm	NA	10ppm	10ppm	5ppm, 1ppm
Acetaldehyde	245.12ppm		25ppm	2ppm	1ppm
Trichloroethylene	48.953ppm	25.973ppm	50ppm	25ppm, 2.6ppm	50ppm, 5.2ppm
Dichloromethane	145.148ppm	269.865ppm	100ppm	500-1000ppm	200ppm


SEPA Lessons Learned

• A higher starting target concentration may yield better curve modeling in the long run, especially for the primary HBECs.

0.01

- Immediate endpoints to determine chemical impact helps inform study design.
- Do NOT take cell lysis methodologies for granted.

- Humidity and Temperature consistency are very important.
- Timing for transcriptomic changes must be evaluated and justified.

-10

Goals & Future Directions

- How to use in vitro data as a predictive tool for quantitative risk assessment?
 - Analyzing cell line vs Primary cell types differential response.
 - How do we validate acute in vitro exposure data with acute in vivo exposure data
- Evaluate the ability of the transcriptomic data to identify concentration-dependent changes in mechanism/mode-of-action.
- Evaluate the ability of the transcriptomic data from the cell culture model to group chemicals by similar bioactivity profiles for potential grouping and read across applications.
- Currently working through a schedule for medium-throughput screening of 15 volatile or aerosolized chemicals in order to evaluate the performance of existing human lung culture models to identify irritants/chemicals with portal of entry effects and differentiate them from systemic toxicants
- Currently establishing technical capabilities and developing methodology for dosimetry of selected chemicals and/or complex mixtures

\$EPA	Future Study Design for <mark>Portal vs Systemic</mark> Toxicant Case Study Design		
Cell Types	Primary Human Bronchial Epithelial Cells 16HBE cells Mattek Epi-Airway cells		
Test Chemical	Napthalene1,3-DichloropropeneChloropicrinDidecyldimethyl ammonium chloride*2-phenylphenol**aerosol exposure		
Exposure Regimen	 6 concentrations, exposure control, incubator control 		
Exposure Duration	 2 hours, Assays conducted 4h post exposure 		
Technical Replicates	 TempO-Seq, n=2; Viability, n=2; Cytotoxicity, n=4 		
Biological Replicates	 Exposures per cell type conducted over three days, n=3 		
Assay Formats	 TempO-Seq Cytotoxicity [LDH Release, Cell Titer Glo] Trans Epithelial Resistance (TEER) Inflammatory response [ELISA for IL-6 and IL-8] 		

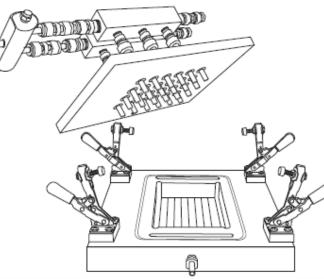
€PA

Acknowledgements

EPA Engineers & Biologists/Toxicologists

ENVIRONNIE

AL PROTEC


- Mark Higuchi
- Jazzlyn Hill
- Wyatt Zander
- Todd Krantz
- Paul Evansky
- Dave Davies
- George Hudson
- Rusty Thomas
- Josh Harrill
- Logan Everett
- Jose Zavala
- Jerrin Gause
- Jason Weinstein
- Lisa Dailey
- Jessica Murray

Funding

AGENC

• Oak Ridge Institute for Science and Education (ORISE) Fellowship

