In Vitro Approach for Assessing Respiratory Toxicity in Human Lung Cells

Monita Sharma1, Sandra Verstraelen2, Evelien Frijns3, Frederick Maes3, Amy J. Clippinger1

1PETA International Science Consortium Ltd., United Kingdom; 2VITO, Flemish Institute for Technological Research, Belgium

Abstract: Approaches to efficiently and effectively assess the toxicity of chemicals on the human respiratory tract using in vitro systems would provide useful information to inform product development and risk management decisions. Presented here is an approach to help better understand the appropriate in vitro system to use and the biological markers to monitor based on the test chemical under evaluation. In this study, BEAS-2B cells (a human bronchial epithelial cell line) were exposed to various concentrations (0.72 ppm, 25 ppm, and 85 ppm) of triethoxysilane vapor at the air-liquid interface using a capillary dosing unit coupled to a VITROCELL 6/4 exposure module. Triethoxysilane is an industrial chemical classified as a GHS category 2 inhalation toxicant based on rat acute inhalation toxicity testing. A significant concentration-dependent decrease in cell viability (resazurin-based assay) and increase in cytotoxicity (lactate dehydrogenase assay) was observed after exposure to triethoxysilane (test chemical) and nitrogen dioxide (positive control) as compared to clean air (negative control). A significant increase in expression of inflammatory markers, determined by Meso Scale Discovery technology, was observed at 25 ppm. Additional work is underway to test other silanes that vary only in their carbon length to determine if this in vitro system can detect the decrease in toxicity that correlates with increasing carbon-chain length and to determine the advantages of using a 2D cell line (BEAS-2B cell) versus a 3D human reconstructed tissue model. Overall, these results will evaluate the utility of an in vitro system to predict the likelihood of a chemical to cause portal-of-entry effects on the human respiratory tract and could be a useful approach to rank chemical toxicity.

Experimental Design

Test chemicals

- Triethoxysilane
- Trimethoxysilane

Vapor Generation

- Vapor generated using capillary dosage system where the fluid is thermally heated, evaporated, and injected dynamically into a gas stream
- Stability monitored by gas chromatography-flame ionization detector (GC-FID) and total hydrocarbon (THC) analyzer
- Different concentrations obtained by using values measured by THC analyzer

Exposure

- 1 hour air-liquid interface exposure of human bronchial epithelial cell line
- Test concentrations: 0.72, 25, and 85 ppm based on LC50 data
- 3 biologically independent runs with 4 replicates each
- Positive control: Nitrogen dioxide
- Negative controls: Clean air (CA) and incubator control (IC)

Results

Cytotoxicity

(Lactate dehydrogenase (LDH) release 30 minutes post-exposure)

Cell viability

(Resazurin-based assay, 20-24 hours post-exposure)

Inflammation

(Cytokine release, 20-24 hours post-exposure)

Mechanism

- Cellular death and damage
- Loss of epithelial barrier
- Secretion of inflammatory cytokines
- Pulmonary edema / hemorrhage

Cellular concentration of test chemical

<table>
<thead>
<tr>
<th>Exposure concentration (molar (ppm))</th>
<th>Concentration of triethoxysilane in CA (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CA1</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>0.72</td>
<td>/</td>
</tr>
<tr>
<td>25</td>
<td>/</td>
</tr>
<tr>
<td>85</td>
<td>/</td>
</tr>
</tbody>
</table>

Observations

- A concentration-dependent cytotoxicity and cell viability response was observed
- A statistically significant release of IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-a was observed for exposure of BEAS-2B cells to 25 ppm triethoxysilane compared to clean air (CA)

Next Steps

- Test additional materials:
 - Silanes: Trimethoxysilane
 - Positive control(s): Triton X and nitrogen dioxide
 - Negative control(s): Clean air, incubator control, and citrate buffered saline
- Include other cell systems:
 - Cell lines
 - Three dimensional reconstructed human tissue models
- Include dosimetry modeling