

MatTek CORPORATION

Monita Sharma¹, Barbara Rothen-Rutishauser², Hana Barosova², Vicki Stone³, Patrick Hayden⁴, Anna Maione⁴, George R. Jackson⁴, Amy J. Clippinger¹ ¹PETA International Science Consortium Ltd., UK, ²Adolphe Merkle Institute, University of Fribourg, CH, ³Heriot-Watt University, UK, ⁴MatTek Corporation, USA.

Abstract

Inhalation is one of the major routes by which exposure to nanomaterials (such as multi-walled carbon nanotubes (MWCNTs)) may occur and lead to adverse effects in humans, such as pulmonary fibrosis. Presented here is a reconstructed primary human alveolar cell-based model (EpiAlveolarTM, MatTek Corp.) that can be used to assess the potential of test materials to cause pulmonary fibrosis. EpiAlveolarTM—comprised of alveolar epithelial cells, pulmonary endothelial cells, and fibroblasts—was developed to mimic the *in vivo* human alveolar microenvironment. Characterization of the model shows presence of alveolar epithelial Type I (ATI) and Type II (ATII) cells, expression of pro-surfactant C, and formation of a tight epithelial barrier. When challenged with transforming growth factor β (TGF- β)—a known positive control for pulmonary fibrosis—the EpiAlveolarTM model demonstrated gradual signs of fibrosis over a period of 21 days such as a significant decrease in barrier integrity (transepithelial electrical resistance (TEER)), increase in extra-cellular matrix proteins (fibronectin and collagen 1a1), and thickening of tissues (hematoxylin and eosin staining). The aforementioned fibrotic biomarkers were also expressed after repeated subchronic exposures (1 – 30 μ g/cm² for up to 21 days) to two types of MWCNTs (Mitsui-7 and Nanocyl) using an air-liquid interface exposure device (VITROCELL® Cloud). The EpiAlveolar[™] model has been described in <u>Barosova et al. 2020</u> and has shown value in measuring several key events along the proposed adverse outcome pathway for pulmonary fibrosis (<u>https://aopwiki.org/aops/173</u>). This system can be used in a mechanism-based in vitro testing strategy using humanrelevant methods to predict pulmonary toxicity and to enable effective risk assessment of substances including MWCNTs.

Mechanism and conceptual model

Characterization and use of organotypic lung model to assess the pulmonary fibrosis of nanomaterials

TGF-β induces (pro-)fibrotic response in EpiAlveolar™ tissues

TGF-β induces increase in extracellular matrix proteins

Assessment of Pro-fibrotic Response

VITROCELL® Cloud

Nanomaterial deposition assessed by TEM

DQ12

Nanocyl

- TGF- β for D21 compared to untreated tissues
- of macrophages

adolphe merkle institute

EpiAlveolar tissues form tight epithelial barrier

Zona occludens (ZO-1, tight junctions) and DAPI (nuclear stain)

EpiAlveolar™ Tissues:

Co-culture of primary human alveolar epithelial cells, pulmonary endothelial cells,

- and human fibroblasts, with or without macrophages
- 2-4 cell layers thick on the apical surface with a thin monolayer of endothelial cells
- Demonstrates tight tissue barrier (>1000 Ω^* cm²)

Observations and next steps:

• After TGF-β treatment, EpiAlveolar tissues began to contract away from the Transwell insert and round up. This contraction resulted in reduced TEER and, subsequently, complete loss (statistically significant decrease; ~ 10 Ω^* cm²) of TEER at D21. This finding was observed in two laboratories

• TGF-β treatment of EpiAlveolar tissues increased release of extracellular matrix proteins, such as fibronectin and collagen (as measured by enzyme-linked immunosorbent assay (ELISA))

• Immunofluorescence staining for fibronectin was increased in the EpiAlveolar tissues treated with

• Collagen1a1 increase after treatment with nanomaterials seems to be dependent on the presence

• Nanomaterial testing with EpiAlveolar tissues will continue under the Horizon 2020 project PATROLS (Physiologically Anchored Tools for Realistic nanOmateriaL hazard aSsessment)