

## Collaborative Acute Toxicity Modeling Suite (CATMoS)

Nicole Kleinstreuer Acting NICEATM Director

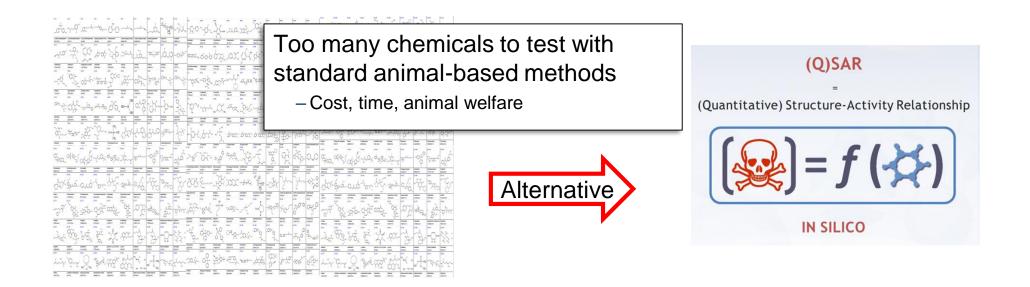
Kamel Mansouri Lead Computational Chemist, ILS/NICEATM





- Project scope: acute oral toxicity
  - Regulatory use of these data
  - Endpoints selected for predictive modeling
  - Compiling inventory of rat acute oral LD50
  - Establishing training, evaluation, and prediction sets
  - Evaluation of submitted models
- International contributors
- Generation of consensus predictions
- Current status and public release

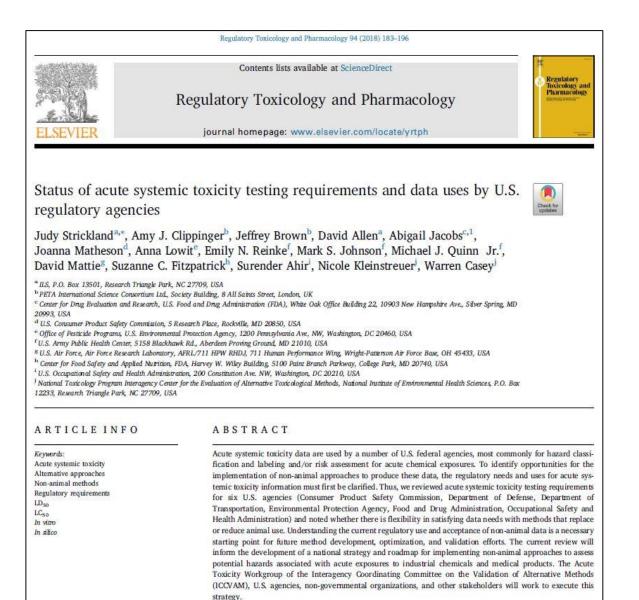




- Organic **pollutants** with exposure potential **accumulate** in body tissues
  - Cause **toxic effects** to wild life and humans
- Existence of gaps in the experimental data for environmental endpoints
  - > Need to fill the data gaps and bridge the **lack of knowledge**
- **Regulatory** requirements:
  - Reduce animal testing, time and costs
- > Methodology: use of QSAR/QSPR to predict the endpoints of interest.

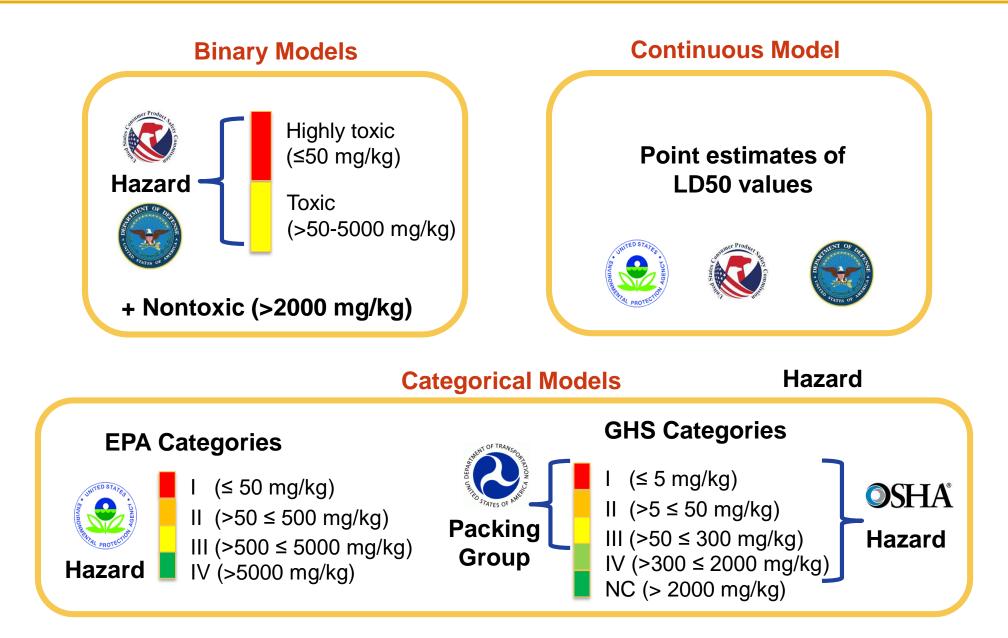
### **ICCVAM Acute Toxicity Workgroup**

 Identifies federal agency requirements, needs, and decision contexts for using acute systemic toxicity data





### **Agency-Based Modeling Endpoint Selection**





Rat oral LD50s: 16,297 chemicals total 34,508 LD50 values

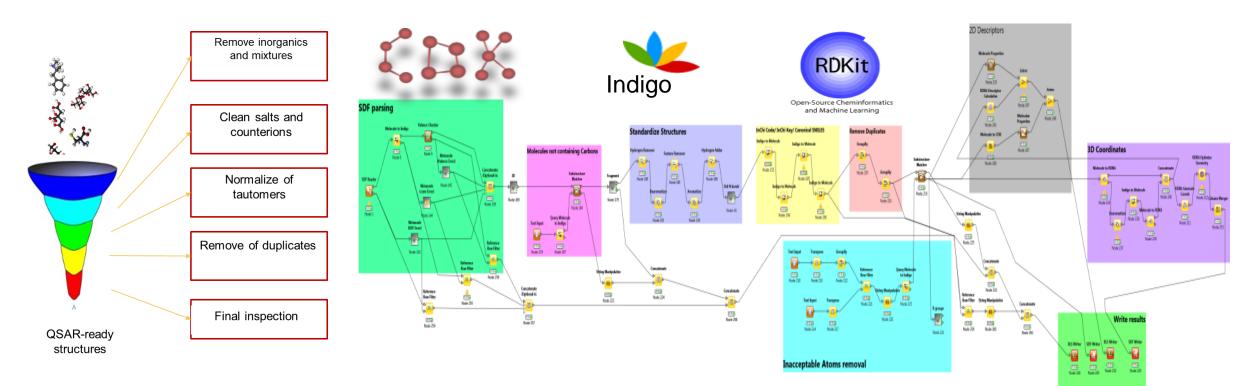
| 15,688 chemicals total | QSAR-ready standardization                                                                                                   | 11992 chemicals with |
|------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 21,200 LD50 values     | Desalted, stereochemistry stripped,<br>tautomers and nitro groups standardized,<br>valence corrected, structures neutralized | accurate structures  |

- Very toxic endpoint: 11886 entries (binary, 0/1)
- Non-toxic endpoint: 11871 entries (binary, 0/1)
- EPA endpoint: 11755 entries (categorical, 4 categories)
- GHS endpoint: 11845 entries (categorical, 5 categories)
- LD50 endpoint: 8908 entries (continuous values)



#### Aim of the workflow:

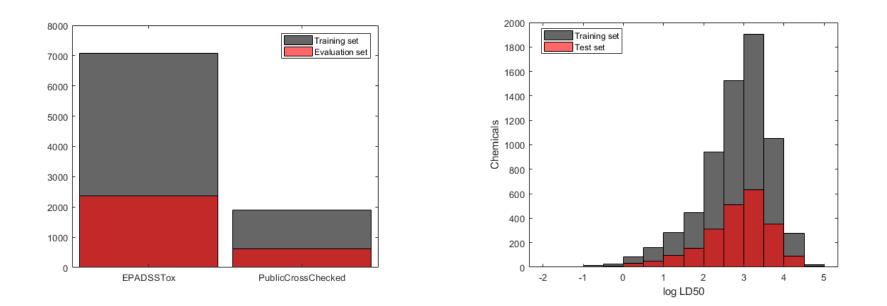
- · Combine different procedures and ideas
- Minimize the differences between the structures used for prediction
- Produce a flexible free and open source workflow to be shared



Fourches et al. J Chem Inf Model, 2010, 29, 476 – 488 Wedebye et al. Danish EPA Environmental Project No. 1503, 2013 Mansouri et al. (http://ehp.niehs.nih.gov/15-10267/)



- Training and evaluation sets:
- 11,992 chemicals from the final inventory of chemicals with QSAR-ready structures having rat oral acute toxicity data were split into training and test sets:
  - 75% training set: 8,994 chemicals
  - 25% evaluation set: 2,998 chemicals
- All endpoints training data included in same structure file
- Similar distributions and variability for values and categories
- Similar distribution of chemical structures sources





• Prediction set:

## Included lists of regulatory interest:

- ToxCast/Tox21
- EDSP
- TSCA



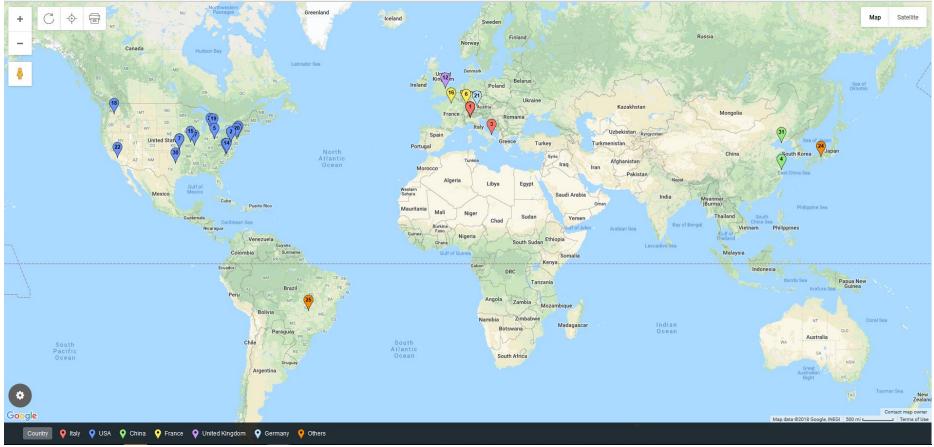
 Substances on the market (EPA Dashboard list) After QSAR-ready standardization:

48137 structures to be predicted (including the evaluation set)



### **Consortium:**

 <u>35 Participants/Groups</u> from around the globe representing academia, industry, and government contributed

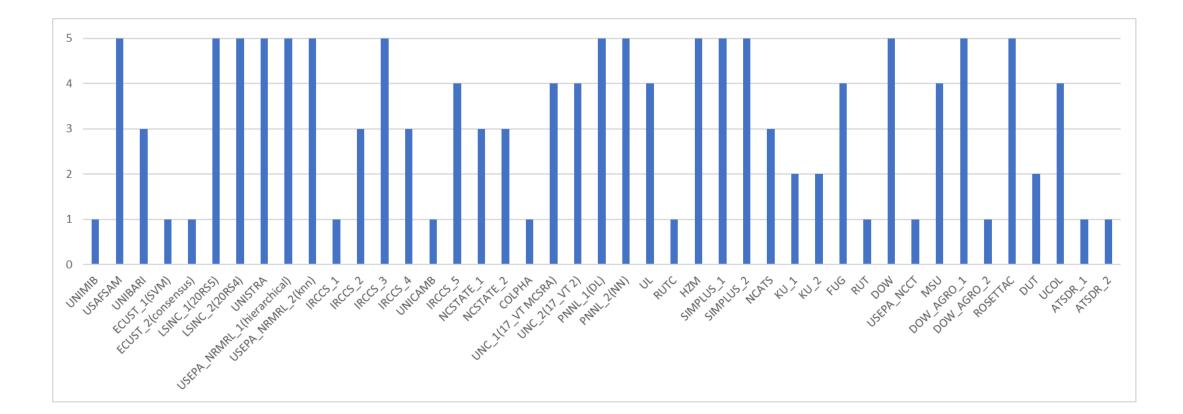


(https://batchgeo.com/map/d06c5d497ed8f76ecfee500c2b0e1dfa)



- Non-toxic: 33 models
- Very Toxic: 32 models
- GHS categories: 23 models
- EPA categories: 26 models
- LD50: 25 models







#### **Qualitative evaluation:**

- Documentation
- Defined endpoint

- Unambiguous algorithmAvailability of code
- Applicability domain definition
- Availability of data used for modeling
- Mechanistic interpretation

#### **Quantitative evaluation:**

• Goodness of fit: training (Tr) statistics • Predictivity: statistics on the evaluation set • Robustness: balance between (Goodness of fit) & (Predictivity)

S = 0.3 \* (Goodness of fit) + 0.45 \* (Predictivity) + 0.25 \* (Robustness)

Categorical models (binary and multi-class): Goodness of fit =  $0.7 * (BA_{Tr}) + 0.3 * (1 - |Sn_{Tr} - Sp_{Tr}|)$ Predictivity =  $0.7 * (BA_{Eval}) + 0.3 * (1 - |Sn_{Eval} - Sp_{Eval}|)$ Robustness =  $1 - |BA_{Tr} - BA_{Eval}|$ 

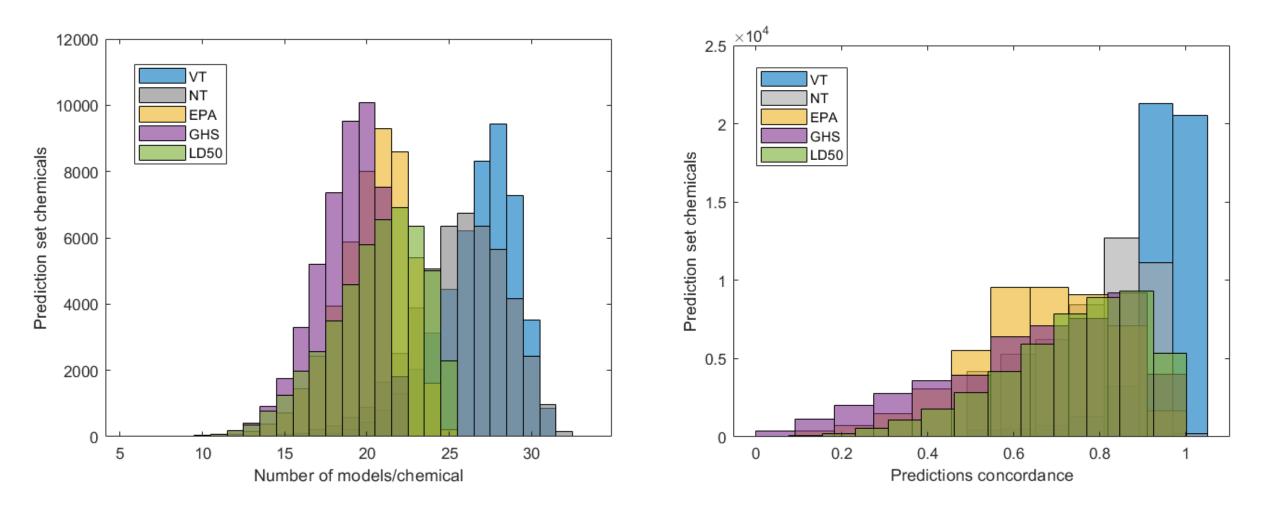
$$BA = \frac{(Sn + Sp)}{2}$$
  $Sn = \frac{TP}{TP + FN}$   $Sp = \frac{TN}{TN + FP}$ 

<u>Continuous models:</u> *Goodness of fit* =  $R_{Tr}^2$  *Predictivity* =  $R_{Eval}^2$ *Robustness* = 1 -  $|R_{Tr}^2 - R_{Eval}^2|$ 

$$R^{2} = 1 - \frac{\sum_{i=1}^{n_{TR}} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n_{TR}} (y_{i} - \bar{y})^{2}}$$

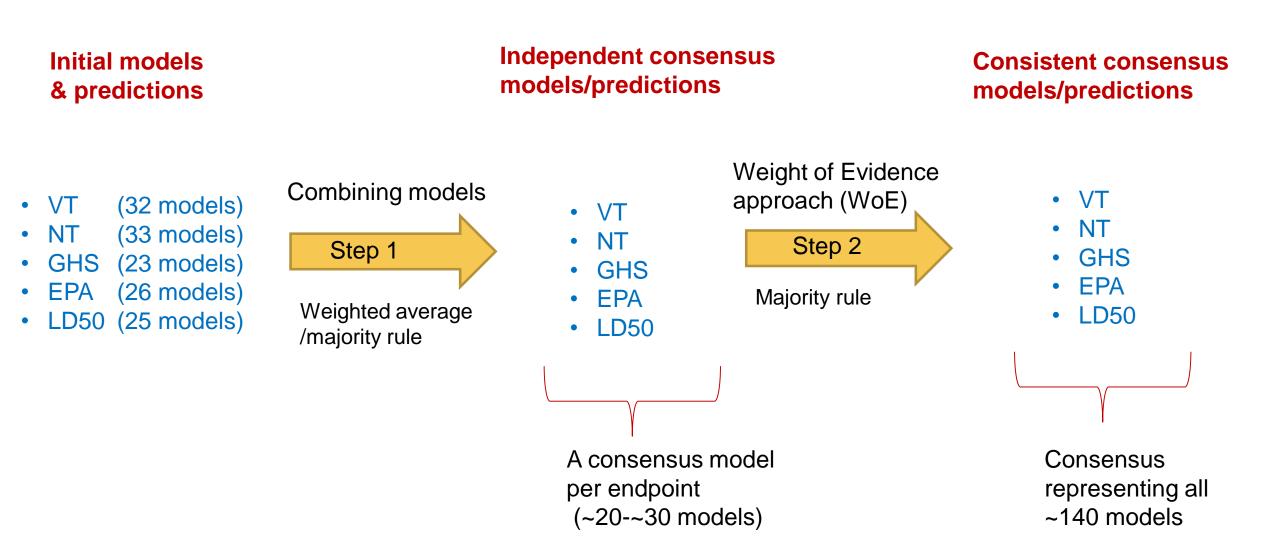
 $\hat{y}_i$  and  $y_i$  are the estimated and observed responses

Coverage and concordance of the models

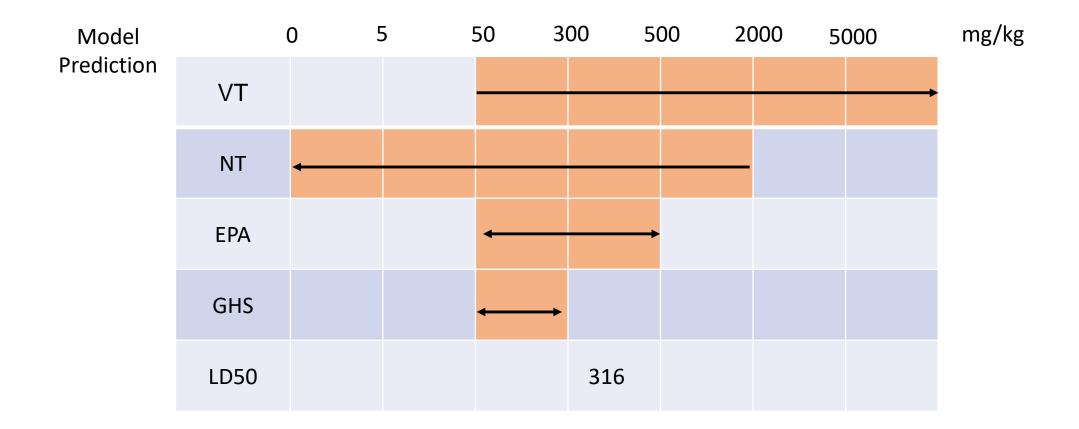




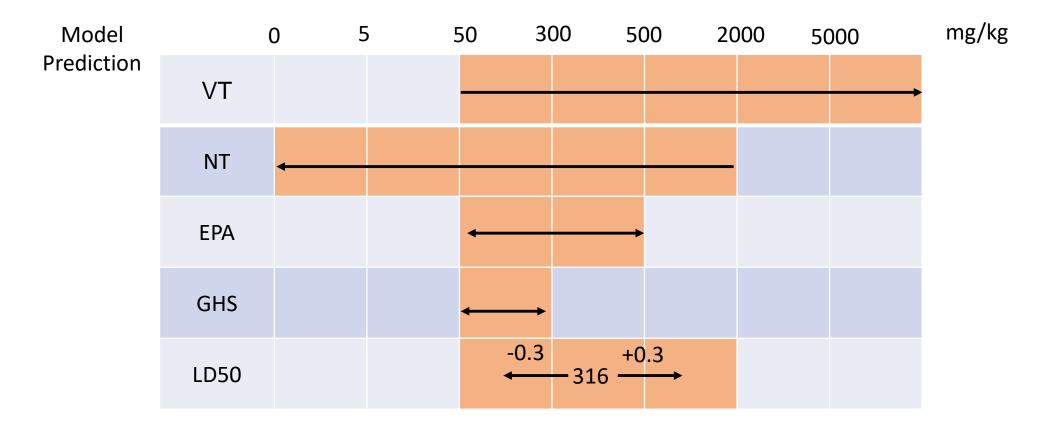
### Steps of combining the single models into consensus



|      | VT | NT | EPA | GHS | LD50 |
|------|----|----|-----|-----|------|
| molX | 0  | 0  | 2   | 3   | 2.5  |



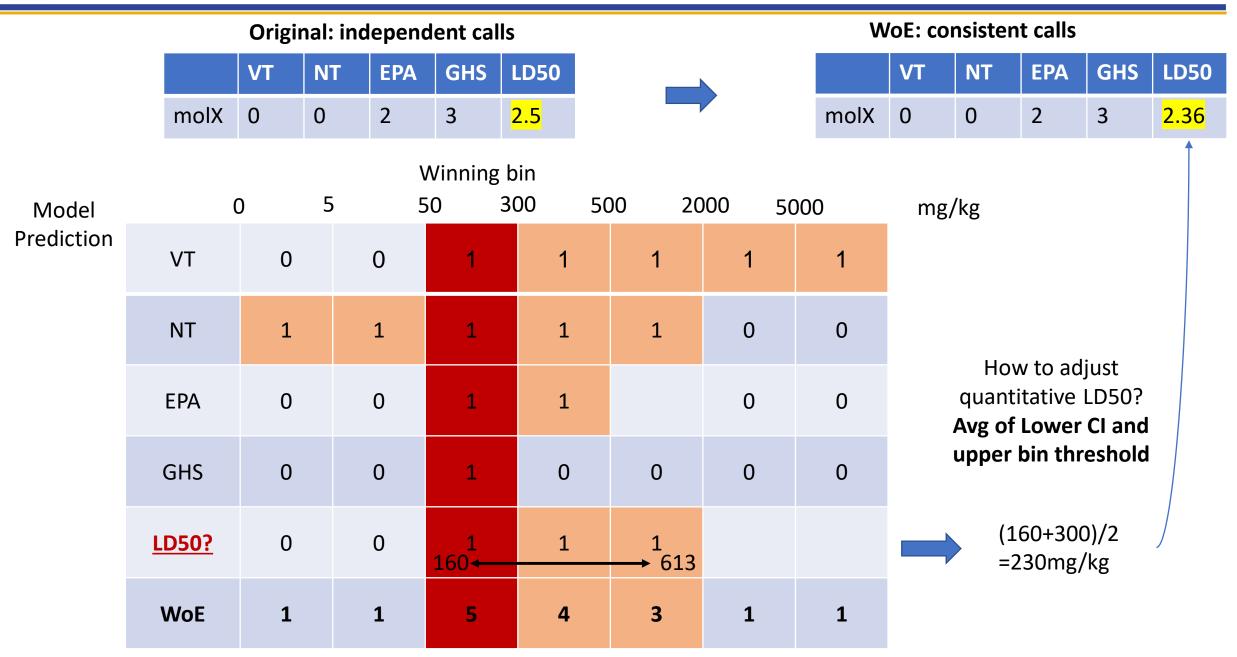
|      | VT | NT | EPA | GHS | LD50 |
|------|----|----|-----|-----|------|
| molX | 0  | 0  | 2   | 3   | 2.5  |



Variability range (log units) for LD50

|      | VT | NT | EPA | GHS | LD50 |
|------|----|----|-----|-----|------|
| molX | 0  | 0  | 2   | 3   | 2.5  |

| Model      |      | 0 5 | 5 5 | 50 30             | 00 50 | 0 20               | 00 50 | 000 | mg/kg |
|------------|------|-----|-----|-------------------|-------|--------------------|-------|-----|-------|
| Prediction | VT   | 0   | 0   | 1                 | 1     | 1                  | 1     | 1   |       |
|            | NT   | 1   | 1   | 1                 | 1     | 1                  | 0     | 0   |       |
|            | EPA  | 0   | 0   | 1                 | 1     |                    | 0     | 0   |       |
|            | GHS  | 0   | 0   | 1                 | 0     | 0                  | 0     | 0   |       |
|            | LD50 | 0   | 0   | 1<br>160 <b>←</b> | 1     | → <sup>1</sup> 613 |       |     |       |
|            | WoE  | 1   | 1   | 5                 | 4     | 3                  | 1     | 1   |       |



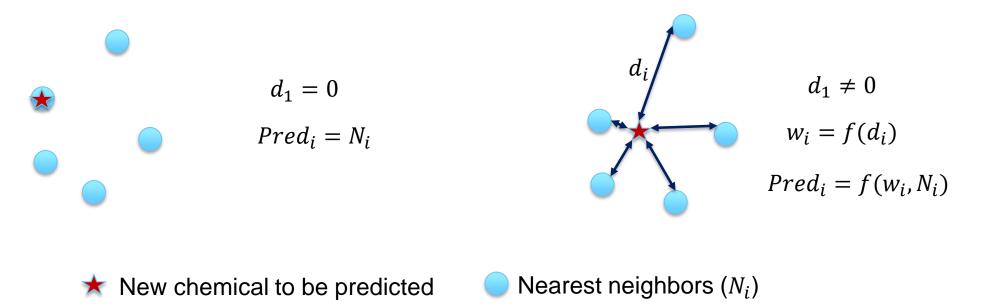
### **Consensus Model Statistics**

|                                        | Very Toxic |      | Non-  | Toxic | E     | PA   | GHS   |      |
|----------------------------------------|------------|------|-------|-------|-------|------|-------|------|
|                                        | Train      | Eval | Train | Eval  | Train | Eval | Train | Eval |
| Sensitivity                            | 0.87       | 0.70 | 0.88  | 0.67  | 0.81  | 0.62 | 0.80  | 0.58 |
| Specificity                            | 0.99       | 0.97 | 0.97  | 0.90  | 0.92  | 0.86 | 0.95  | 0.90 |
| Balanced<br>Accuracy                   | 0.93       | 0.84 | 0.92  | 0.78  | 0.87  | 0.74 | 0.88  | 0.74 |
| <i>In vivo</i><br>Balanced<br>Accuracy | 0.         | 81   | 0.    | 0.89  |       | 82   | 0.    | 79   |

|      | LD50  | values | LD50 values |
|------|-------|--------|-------------|
|      | Train | Eval   | In Vivo     |
| R2   | 0.85  | 0.65   | 0.80        |
| RMSE | 0.30  | 0.49   | 0.42        |

The consensus predictions perform just as well as replicate *in vivo* data do at predicting oral acute toxicity outcome

### Weighted read-across



 $d_i$ : Euclidean distance based on the selected descriptors for each endpoint



Automated, similarity-endpoint dependent read-across: weighted kNN

Generation of Consensus Predictions

- Models passing qualitative evaluation (requirement for transparency; description of approach was sufficient)
- Integrating only *in-domain* predictions across chemicals in the prediction set (48,137 chemicals) for each model, respectively
  - Categorical models: weighted majority rule
  - Continuous model: weighted average



Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation



Nicole C. Kleinstreuer<sup>a</sup>, Agnes L. Karmaus<sup>b</sup>, Kamel Mansouri<sup>b</sup>, David G. Allen<sup>b</sup>, Jeremy M. Fitzpatrick<sup>c</sup>, Grace Patlewicz<sup>c,\*</sup>



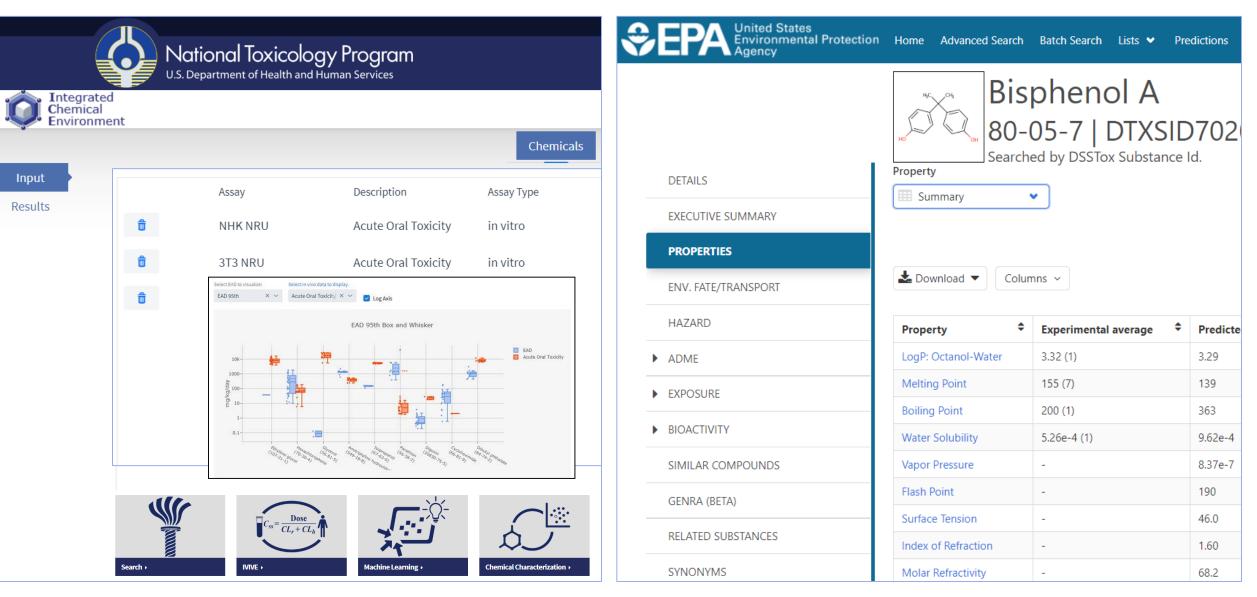
| Agency                                      | No. Substances | Agency    | No. Substances |
|---------------------------------------------|----------------|-----------|----------------|
| Air Force                                   | 421            | EPA OPP   | 36             |
| Army Public Health Command                  | 18             | EPA OPPT  | 8              |
| Army Edgewood Chemical<br>Biological Center | 42             | EPA NCCT  | 4815           |
| CPSC                                        | 110            | FDA CFSAN | 22             |
| DOT                                         | 3671           |           |                |

### **Evaluate and optimize CATMoS predictions based on lists of interest**

## Soon on NTP/ICE and EPA CompTox dashboard

#### https://ntp.niehs.nih.gov/

#### https://comptox.epa.gov/dashboard





#### **OPERA Standalone application**

| OPERA_CL                                                                                                                                                                                                                                                                     | - 🗆 ×        | OPERA 2.3                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OPERA models for physchem, environmental fate and t<br>Version 2.3 (June 2019)<br>OPERA is a command line application developed in Matlab pro<br>models predictions as well as applicability domain and accura<br>Developed by:<br>Kamel Mansouri<br>mansourikamel@gmail.com | oviding QSAR | Input <pre>          C:\Users\kmansouri\Downloads\Sample_50.smi      </pre> Output           C:\Users\kmansouri\Downloads\OPERA2.3_Pred.csv       Models        Physchem properties        LogP    MP      BP    VP      Wirronmental fate        LogBCF    AOH      Biodeg    R-Biodeg      KM    KOC      Toxicity endpoints        ER (CERAPP)    AR (CoMPARA)      ADME properties        FUB    Clint |
| Usage: OPERA <argument_list><br/>Examples:<br/>OPERA -s Sample_50.sdf -o predictions.csv -a -x -v 2<br/>opera -d Sample_50.csv -o predictions.txt -e logP BCF -n -v 1<br/>Type OPERA -h or OPERAhelp for more info.</argument_list>                                          | 1            | Output options    i      Separate files    Loaded structures from SMILES file: 50      Experimental values    Calculated PaDEL descriptors: 1444 (11 sec)      Nearest neighbors    Include descriptor values      Keep full descriptors files    Fredicted structures: 50 (3 sec)                                                                                                                         |
| Command line                                                                                                                                                                                                                                                                 |              | Graphical user interf                                                                                                                                                                                                                                                                                                                                                                                      |

#### **Graphical user interface**

 $\times$ 

Browse Browse

Standardize

Г フ

Calculate

(i)

- Free, opensource & open-data
- Single chemical and batch mode
- Multiple platforms (Windows and Linux)
- Embeddable libraries (java, C, C++, Python)

https://github.com/NIEHS/OPERA https://ntp.niehs.nih.gov/go/opera

#### Mansouri et al. J Cheminform (2018). https://doi.org/10.1186/s13321-018-0263-1



### Since OPERA v1.5

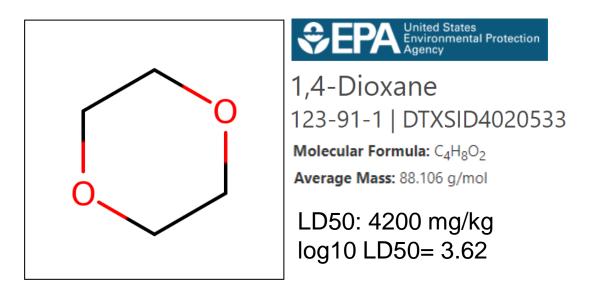
#### Physchem & Environmental fate:

| Model | Property                               |
|-------|----------------------------------------|
| AOH   | Atmospheric Hydroxylation Rate         |
| BCF   | <b>Bioconcentration Factor</b>         |
| BioHL | Biodegradation Half-life               |
| RB    | Ready Biodegradability                 |
| BP    | Boiling Point                          |
| HL    | Henry's Law Constant                   |
| KM    | Fish Biotransformation Half-life       |
| KOA   | Octanol/Air Partition Coefficient      |
| LogP  | Octanol-water Partition<br>Coefficient |
| MP    | Melting Point                          |
| KOC   | Soil Adsorption Coefficient            |
| VP    | Vapor Pressure                         |
| WS    | Water solubility                       |
| RT    | HPLC retention time                    |

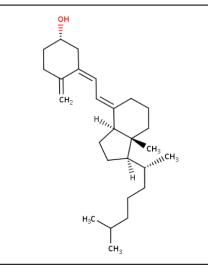
### **New since OPERA 2.0**

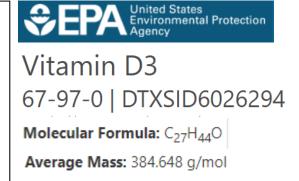
- Physchem properties:
  - General structural properties
  - pKa
  - Log D
- ADME properties
  - Plasma fraction unbound (FuB)
  - Intrinsic clearance (Clint)
- Toxicity endpoints
  - ER activity (CERAPP)
    <u>https://ehp.niehs.nih.gov/15-10267/</u>
  - AR activity (CoMPARA) <u>https://doi.org/10.13140/RG.2.2.19612.80009</u>
  - Acute toxicity (CATMoS) <u>https://doi.org/10.1016/j.comtox.2018.08.002</u>)





https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID4020533





LD50: 42 mg/kg log10 LD50= 1.62

https://comptox.epa.gov/dashboard/dsstoxdb/results?search=DTXSID6026294

### **CATMoS predictions:**

| MoleculeID | CATMoS_VT_pred | CATMoS_NT_pred | CATMoS_EPA_pred | CATMoS_GHS_pred | CATMoS_LD50_pred | AD_CATMoS | AD_index_CATMoS | Conf_index_CATMoS |
|------------|----------------|----------------|-----------------|-----------------|------------------|-----------|-----------------|-------------------|
| '123-91-1' | 0              | 1              | 3               | 5               | 3.4053           | 1         | 1               | 0.9500            |
| '67-97-0'  | 1              | 0              | 1               | 2               | 1.2845           | 1         | 1               | 0.8684            |

# Issues in the data revealed by the predictions

| С         | L M                                | Т             | V         | BH                      | BI               | BJ               | BK      | BL       | BM        | BO                                     | BP             | BQ            |
|-----------|------------------------------------|---------------|-----------|-------------------------|------------------|------------------|---------|----------|-----------|----------------------------------------|----------------|---------------|
| RML.CAS.r | Count Original_LD50 (Concatenate)  | ld50_mea      | log(LD50_ | ECHA_log(LD50) (Median) | CATMoS_LD50_data | CATMoS_LD50_pred | AD_LD50 | AD_index | Conf_inde | Curated LD50 (mg/kg unless otherwise   | New LD50(mg/kg | ECHA dossier  |
| 106-88-7  | 2 >1<1.58, ca.900                  | 635.4839      | 2.010766  | 1.53241611              | 2.698970004      | 2.853029628      | 1       | 1        | 0.916667  | 900, 1100uL/kg (so ~1100 mg/kg)        | 1100           | https://www.e |
| 107-83-5  | 1 ca.15.84                         | _             |           | 1.199755177             |                  | 3.448749354      | 1       | 1        | 0.725     | 15.84, 15,840 from analog hexane?      | 15840          | https://www.e |
| 109-99-9  | 1 1.65                             | $\mathcal{A}$ |           | 0.217483944             | 3.217483944      | 3.187110886      | 1       | 1        | 0.953463  | 1.65 g/kg                              | 1650           | https://www.e |
| 111-66-0  | 15 >5, >2000, >2000<5000, >5000    | 2841.763      | 0.640297  |                         |                  | 3.45444881       | 1       | 1        | 0.835565  | 5ml/kg, 10ml/kg (so ~5000mg/kg and     | 5600           | https://www.e |
| 111-67-1  | 8 >5, >5000, >5000, >5000, >5000   | 3152.287      | 0.871083  |                         |                  | 3.492481795      | 1       | 1        | 0.829743  | > 10,000 mg/kg                         | 10000          | https://www.e |
| 111-90-0  | 10 <5, >5000, 5600, 6300, 6429, 7  | 4053.38       | 1.120322  |                         | 3.745855195      | 3.65968502       | 1       | 1        | 0.96      | 6031mg/kg                              | 6031           | https://www.e |
| 112-41-4  | 15 >5, >2000, >2000<5000, >5000    | 2841.763      | 0.640297  |                         |                  | 3.544496936      | 1       | 1        | 0.818182  | > 5 600 mg/kg bw                       | 5600           | https://www.e |
| 112-88-9  | 30 >5, >5, >2000, >2000, >2000<5   | 2792.337      | 0.62916   |                         |                  | 3.635710211      | 1       | 1        | 0.818182  | >5600 mg/kg                            | 5600           | https://www.e |
| 1120-36-1 | . 30 >5, >5, >2000, >2000, >2000<5 | 2792.337      | 0.62916   |                         |                  | 3.596186376      | 1       | 1        | 0.818182  | >5600 mg/kg                            | 5600           | https://www.e |
| 120657-54 | 4 1 >5                             |               |           |                         |                  | 3.666120933      | 1       | 0.939981 | 0.800223  | >5000mg/kg based on methods sectic     | 5600           | https://www.e |
| 15290-77- | 1 >2                               |               |           |                         |                  | 2.753248503      | 1       | 1        | 0.928571  | >2000                                  | 2500           | https://www.e |
| 15708-41- | 2 ca.10, >2000                     | 2467.803      | 1.798928  | 2.272034022             | 3.699056855      | 3.542618212      | 1       | 1        | 0.826087  | >2000, 10000                           | 6750           | https://www.e |
| 2082-81-7 | 1 1066                             |               |           | 1.002856926             | 1.002856926      | 3.519759531      | 1       | 0.925145 | 0.857464  | 10.066 listed, but dose groups were m  | 10066          | https://www.e |
| 27689-12- | 1 >17                              |               |           |                         |                  | 3.199754313      | 1       | 0.819989 | 0.820274  | 16 mL/kg (17,600 mg/kg).               | 17600          | https://www.e |
| 39255-32- | 3 >5, >5, >2000                    | 2004.849      | 1.21517   |                         |                  | 3.706432708      | 1       | 1        | 0.75      | >2000, >5000(MALES), >5000(FEMALE      | 3500           | https://www.e |
| 4499-91-6 | 7 >33, >300, >655, >2000, >2000    | 2447.428      | 0.74583   |                         |                  | 3.83929336       | 1       | 1        | 0.755952  | 2000, 2000, 5000, 5000, 2000, >5<15g   | 3500           | https://www.e |
| 543-39-5  | 1 5.3                              |               |           | 0.72427587              | 0.72427587       | 3.290357289      | 1       | 0.95565  | 0.898544  | 5.3g/kg                                | 5300           | https://www.e |
| 56-81-5   | 3 >20<39800, 27, 18300             | 11044.07      | 1.645202  |                         | 3.958324932      | 3.740734556      | 1       | 1        | 0.68      | 27260 mg/kg                            | 18300          | https://www.e |
| 592-41-6  | 15 >5, >2000, >2000<5000, >5000    | 2841.763      | 0.640297  |                         |                  | 3.296929233      | 1       | 0.955175 | 0.823902  | read-across source >5600 mg/kg.        | 5600           | https://www.e |
| 629-73-2  | 30 >5, >5, >2000, >2000, >2000<5   | 2792.337      | 0.62916   |                         |                  | 3.60464617       | 1       | 1        | 0.818182  | 5ml/kg, 10ml/kg, 5g/kg, >2000<5000     | 3500           | https://www.e |
| 75-50-3   | 11 ca.2, 396.9, 397, 460, 500, 512 | 496.477       | 0.783002  | 2.823474229             | 2.662757832      | 2.657059529      | 1       | 1        | 0.806983  | 2.0g/kg                                | 666            | https://www.e |
| 76114-73- | 4 <2, ca.1000, >1000<2000, >=1     | 744.9386      | 1.568433  | 3.08804563              |                  | 2.692073541      | 1       | 1        | 0.761905  | ECHA typo lists 2mg/kg, but test dose: | 1250           | https://www.e |
| 7620-77-1 | 7 >33, >300, >655, >2000, >2000    | 2447.428      | 0.74583   |                         |                  | 3.722889223      | 1       | 1        | 0.794444  | 5g/kg, >5<15g/kg, 3g/kg, 15g/kg, 300(: | 3500           | https://www.e |
| 77-98-5   | 11 12.575, >12.5<125, 43.75, 47,   | 423.6832      | 0.5267    | 2.235528447             |                  | 2.963016785      | 1       | 1        | 0.791173  | >300<2000, >12.5<125, 43.75, 12.5-75   | 175            | https://www.e |
| 872-05-9  | 15 >5, >2000, >2000<5000, >5000    | 2841.763      | 0.640297  |                         |                  | 3.514069783      | 1       | 1        | 0.826087  | 5ml/kg, 10ml/kg, 5gm/kg, >2000<500(    | 3500           | https://www.e |

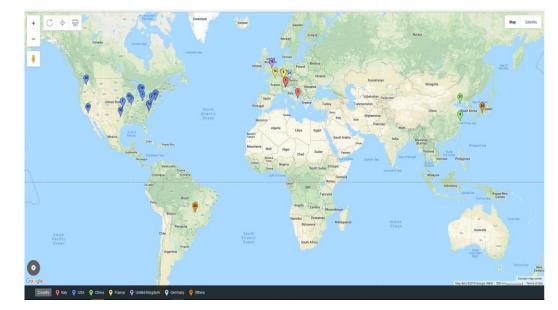
Examples where the 5 models (VT, NT, EPA, GHS, LD50) are in agreement with high confidence levels, with high margin between predictions and ECHA data



### **THANK YOU!**

- ICCVAM Acute Toxicity Workgroup
- EPA/NCCT
  - Grace Patlewicz
  - Jeremy Fitzpatrick
- ILS/NICEATM
  - Kamel Mansouri
  - Agnes Karmaus
  - Dave Allen
  - Shannon Bell
  - Patricia Ceger
  - Judy Strickland
  - Amber Daniel
- NTP/NICEATM
  - Warren Casey

### All CATMoS international collaborators



Feedback welcome: Kamel Mansouri (kmansouri@ils-inc.com)

Technical support was provided by ILS under NIEHS contract HHSN273201500010C.