

Foetal Bovine Serum Replacement

Jan van der Valk

Director 3Rs-Centre Utrecht Life Sciences

Fac. Veterinary Medicine

Utrecht University

Reasons to replace Fetal Bovine Serum *Animal welfare*

> Fetuses are likely exposed to pain and/or discomfort and therefore current practice of fetal blood harvest is inhumane.

Do we have evidence?

Animal deserves the benefit of the doubt!

Jochems et al., (2002) ATLA 30, 219-227

PISC Webinar: Replacing Foetal Bovine Serum in Cell Culture Media, 11-07-2019

Reasons to replace Fetal Bovine Serum *Fraud 1*

<u>Jochems et al., 2002</u> <u>https://doi.org/10.1177/026119290203000208</u>

Since scientists would like 'clean' FBS, New Zealand sourced FBS has preference.

There, is at least, twice as much NZ serum on the market than is produced there.

PISC Webinar: Replacing Foetal Bovine Serum in Cell Culture Media, 11-07-2019

Reasons to replace Fetal Bovine Serum *Fraud 2*

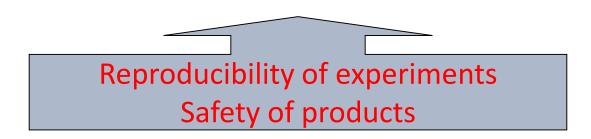
Since the demand is greater than the supply, prices have gone up by 300%.

ATLA 42, 207–209, 2014 Gstraunthaler, Lindl, van der Valk, 2014

207

Comment

"These products may contain added adult bovine serum albumin (BSA) of United States origin, water, and/or cell growth promoting additives. For


> In 2011, GE Healthcare (a unit of General Electric Co.) acquired PAA Laboratories, Linz, Austria. In April 2013, GE Healthcare published a product information to customers, stating that batches of fetal bovine serum (FBS) produced at PAA facilities from March 2008 to March 2013 are subject to label non-conformances, i.e. that:

From this, it can be concluded that the use of serum in cell culture may involve a number of disadvantages: a) serum in general is an ill-defined supplement in culture media, with high qualitative and quantitative, geographical and seasonal batchto-batch variations; b) FBS may contain adverse factors, like endotoxins, mycoplasma, viral contaminants or prion proteins; c) there are animal

Reasons to replace Fetal Bovine Serum *Scientific problems*

- Composition of FBS unknown
- Qualitative and quantitative variations between serum batches
- May contain different amounts of endotoxins, haemoglobin and other adverse factors
- May be contaminated with viruses, bacteria, fungi, mycoplasms and prions

When considering supplementing cell and tissue culture media with animal serum the <u>"Not</u>,

unless...." principle should be applied.

Preferentially, the medium should <u>not</u> contain any *animal-derived* component, unless it was proved to be an absolute requirement.

Review

Optimiza

bovine se

I. van der V

ALTEX Online first published August 9, 2017; version 2 doi:10.14573/altex.1705101

Consensus Report

Fetal Bovine Serum (FBS): Past – Present – Future

Jan van der Valk¹, Karen Bieback², Christiane Buta³, Brett Cochrane⁴, Wilhelm G, Dirks⁵, Jianan Fu⁶, James J. Hickman⁷, Christiane Hohensee⁸, Roman Kolar⁹, Manfred Liebsch¹⁰, Francesca Pistollato¹¹, Markus Schulz¹², Daniel Thieme¹³, Tilo Weber⁹, Joachim Wiest¹⁴, Stefan Winkler¹⁵ and Gerhard Gstraunthaler¹⁶

T. Lindl^g, J. *NCA, DWM, Fac. 1 ^b zet-Life Science Lo ^c Federal Agency fo ^d Institute of Molec e Department of Ph ¹Department of Pu ⁸Institut für angew h In-Vitro Methods Ispra (VA), Italy ¹INRAN, National R ^jDepartment of Phy

¹The 3Rs-Centre Utrecht Life Sciences, Utrecht University, Utrecht, The Netherlands; ²Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 3SET Foundation, Frankfurt a. M., Germany, ⁴Animal Free Research UK, Hitchin, Hertfordshire, England; ⁵Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, PAN-Biotech Ltd, Aidenbach, Germany, NanoScience Technology Center, University of Central Florida, Orlando, USA; 8Invitro+Jobs, The Federal Association of People for Animal Rights Germany (PARG), Aachen, Germany; 9Animal Welfare Academy, German Animal Welfare Federation, Neubiberg, Germany; ¹⁰Königs Wusterhausen, Germany; ¹¹Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, Ispra, VA, Italy, ¹²BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany; ¹³Department of Ophthalmology, Universität Erlangen-Nürnberg, Erlangen, Germany, ¹⁴cellasys GmbH, Kronburg, Germany, 15Institute of Applied Cell Culture (IAZ), Munich, Germany, 16Division of Physiology, Medical University Innsbruck, Innsbruck, Austria

ARTICLE Summarv

Article history: Received 10 Marcl Accepted 25 Marc Available online 3

Keywords: In vitro methods Fetal bovine serun Serum-free Good cell culture Tissue culture 3Rs

The supplementation of culture medium with fetal bovine serum (FBS, also referred to as 'fetal calf serum') is still common practice in cell culture applications. Due to a number of disadvantages in terms of quality and reproducibility of *in vitro* data, animal welfare concerns, and in light of recent cases of fraudulent marketing, the search for alternatives and the development of serum-free medium formulations gained global attention. Here, we report on the 3rd Workshop on FBS, Serum Alternatives and Serum-free Media, where (a) regulatory aspects, (b) the serum dilemma, (c) alternatives to FBS, (d) case-studies of serum-free in vitro applications, and (e) the establishment of serum-free databases, were discussed.

The whole process of obtaining blood from a living calf fetus to using the FBS produced from it for scientific purposes is de facto not yet legally regulated, despite the existing EU-Directive 2010/63/EU on the use of animals for scientific purposes. Together with above mentioned challenges, several strategies have been developed to reduce or replace FBS in cell culture media in terms of the 3Rs (Refinement, Reduction, Replacement). Most recently, releasates of activated human donor thrombocytes (human platelet lysates) have been shown to be one of the most promising serum alternatives when chemically defined media are not yet an option. Additionally, new developments in cell-based assay techniques, advanced organ-on-chip and microphysiological systems are covered in this report. Chemically-defined serum-free media are shown to be the ultimate goal for the majority of culture systems, and examples are discussed.

manung relicheap,) is an chemisuppleercially en limnent of Copen-

In this

nedium

newly

Serum-free media

<u>Serum-free media</u> animal/human tissue or plant extracts

Protein-free media peptide fractions. Not defined.

<u>Animal-derived component free</u> plant, bacteria or yeast components

<u>Chemically defined</u> fully defined

Human platelet lysates (hpl's)

Van der Valk et al, 2010 and Rauch et al., 2011

- Growth factors
- Expired donated human blood
- Obtained by freeze/thawing
- Safe / clinically tested, high quality
- Human based xeno-free system
- Universal application

Chemically-defined medium

Advantages:

- Chemically defined and controlled
- Low qualitative and quantitative variability
- Simplified isolation of (synthetic) products/metabolites
- Avoids animal use
- As yet, no universal chemically-defined medium
- Selective for specific cell types

Chemically-defined medium

At least 530 formulations available for 260 cell types.

- Commercially available
- Modifications of (commercially) available media
- Formulation available from literature

Many cell types have not yet a chemically-defined medium.

Commercially available supplements

- Limited information on ingredients
- Change of composition without notice
- Expensive

Developing your own serum-free medium

Developing your own serum-free medium *1. Basal medium*

- 50:50 (v/v) mixture of DMEM and Ham's nutrient mixture F-12
- **ITS** supplement (insulin, transferrin and selenium)

Developing your own serum-free medium

2. *Supplements*

- Hormones
- Growth factors
- Protease inhibitors
- Protein hydrolysates
- Shear force protectors
- Proteins
- Vitamins
- Amino acids
- Glutamine
- Trace elements
- Lipids
- Antibiotics
- Attachment factors
- Osmolarity

Development of a serum-free medium using computer-assisted factorial design and analysis

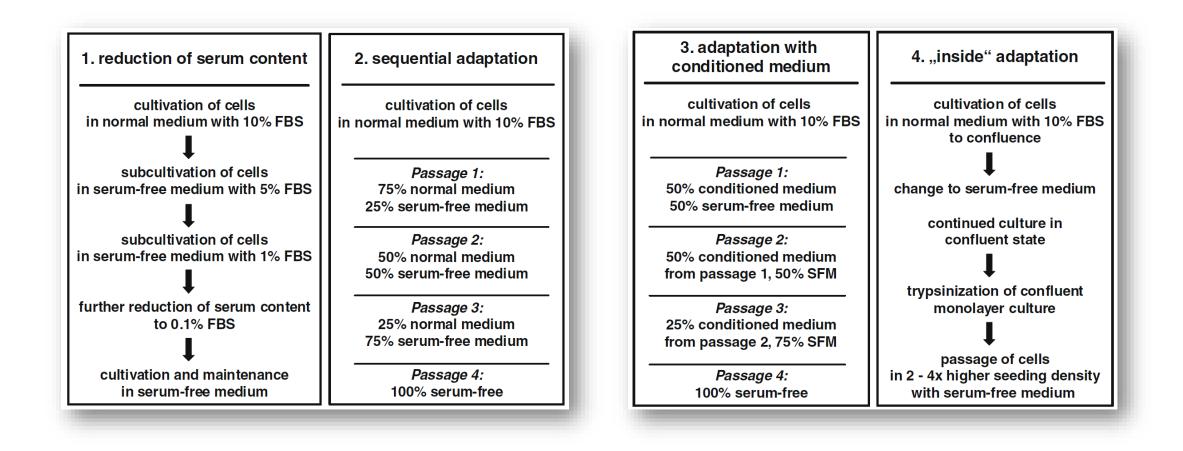
Lao, MS. & Schalla, C. Cytotechnology (1996) 22: 25. <u>https://doi.org/10.1007/BF00353921</u>

Use of real-time cellular analysis and Plackett-Burman design to develop the serum-free media for PC-3 prostate cancer cells

Zhao et al, *PLOS one* September 25, 2017, <u>https://doi.org/10.1371/journal.pone.0185470</u>

"In summary, this high-throughput scheme minimized the screening time and may thus provide a new platform to efficiently develop the serum-free media for adherent cells".

Factorial design approach


This statistical method *(factorial experimental design and analysis*), aided with a commercially available specialized computer program,

- enables the systematic study of complex components,
- identifies significant factors,
- and, most importantly, their interactions.

Lao, MS. & Schalla, C. Cytotechnology (1996) 22: 25. https://doi.org/10.1007/BF00353921

Cell adaptation

Identification of available serum-free media

FCS-free database fcs-free.org

Home Events FCS-free Database News Partners & donors Symposium References and Reviews

260 different cell types.

531 different media

About

Fetal Calf Serum (FCS, also known as Fetal Bovine Serum, or FBS) is a common supplement of animal cell culture media. However, moral and scientific concerns demonstrate the urgency to switch to an FCS-free medium. The FCS-free Database, part of the 3Rs Database Programme, provides an overview of FCS-free media for cellculture. A forum function for each record allows researchers to discuss the applicability of each product. The database is offered by the 3Rs-Centre ULS in collaboration with Animal Free Research UK.

FCS-free database

Quicklinks

REAL PROPERTY

Welcome to the Fetal Calf

Serum-Free Database

- FCS-free Database
 - > References and reviews
 - > Make a donation
 - > Partners and donors

How to use this website

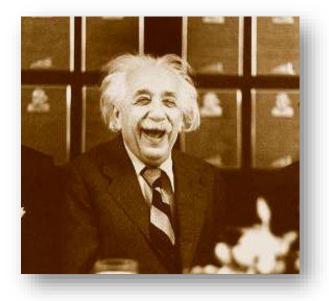
You have free access to the entire database. Choose between the different cell types, products, sources (i.e. companies or literature), and specified parameters and compare these with each other in order to choose the best medium for your research.

HDOUL *

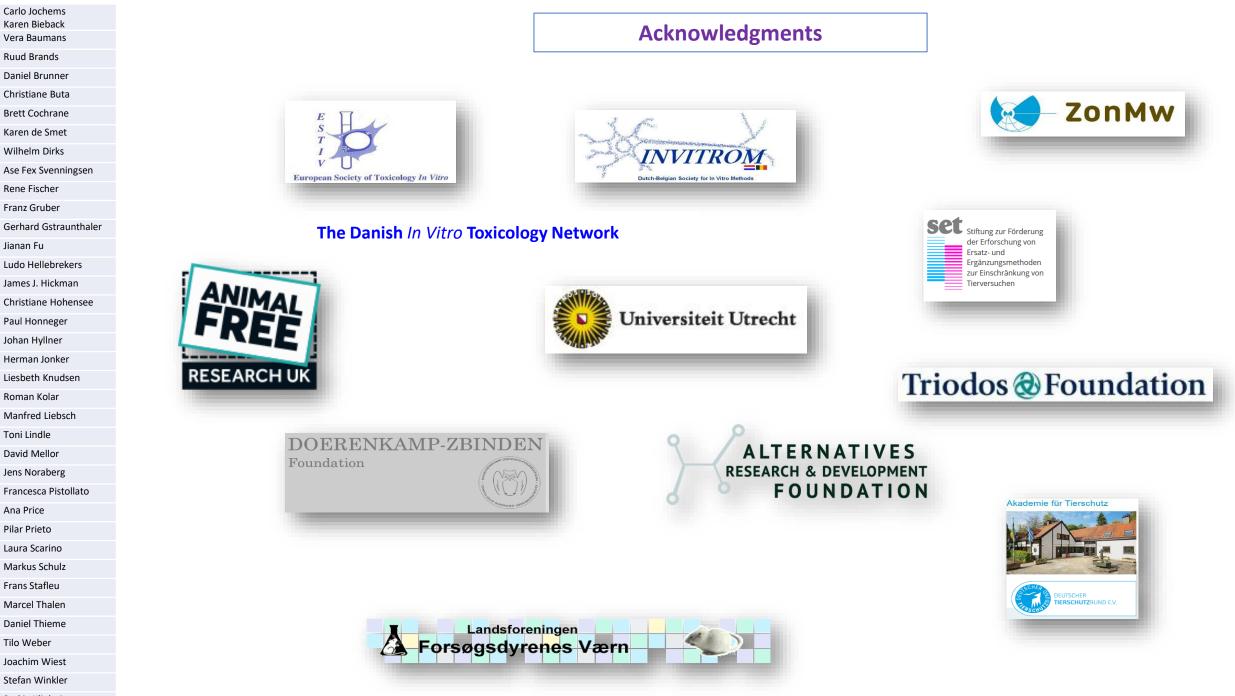
Contact

🗄 Go to the manual

- Animal welfare is possibly at stake when fetal calf blood is collected for production of FBS
- Fraudulous practices
- Scientific problems
- Preference for chemically-defined media
- Serum-free database (fcs-free.org)


Final conclusion

Serum free media are:


• Better for the animals

• Better for research

Saskia Kliphuis Maite van Gerwen

Thank You!

Jan van der Valk j.vandervalk@uu.nl www.uu.nl/3RsCentreULS

