

Foetal Bovine Serum Background

Jan van der Valk

Director 3Rs-Centre Utrecht Life Sciences Fac. Veterinary Medicine Utrecht University Fetal Bovine Serum (FBS)
=
Fetal Calf Serum (FCS)

Culture Media

Culture media, which

> are essential for immediate cell survival

> are capable of sustaining cell survival

> supply all necessary nutrients for sustained cell growth and proliferation

> induce specific, differentiated functions

(survival media)

(maintenance media)

(growth or proliferation media)

(differentiation media)

Cell Culture Medium

Basic salt solution- glucose – buffer - nutrients – vitamins –salts – buffers – amino acids

- Ringer's solution
- Basal Medium Eagle (BME)
- Modified Eagle's Medium (MEM)
- Minimal Essential Medium (MEM)
- Dulbecco's Modified Eagle's Medium (DMEM)
- RPMI
- Ham's
- F-12
- DMEM/F-12

Growth supplement

To survive, grow and multiply: growth supplement

Serum

Foetal Calf Serum – Foetal Bovine Serum Universal supplement

Serum provides

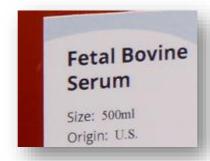
- Proteins
- Vitamins
- Hormones
- Shear force protection
- Attachment factors
- Trace elements

- Growth factors (FBS)
- Limited number of antibodies (FBS)


Foetal Bovine Serum - Use

In vitro research

Development in vitro meat

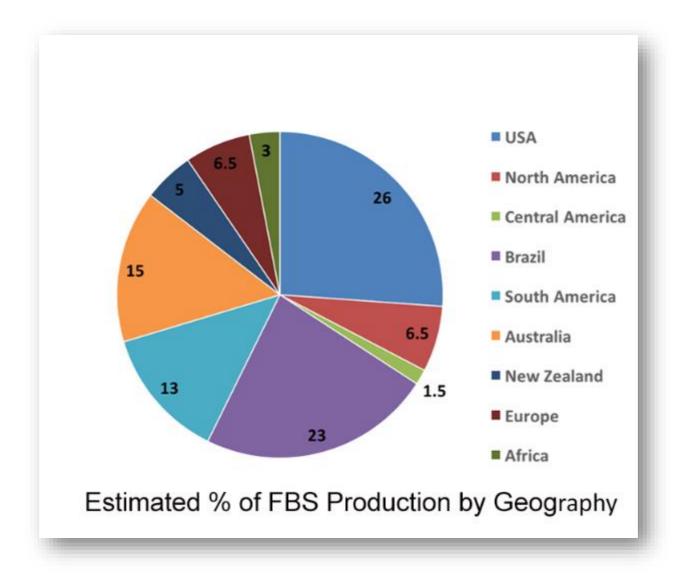

In Vitro Fertilization

Origin

Foetal bovine blood that is to be processed to serum is collected from animals at the time of slaughter.

USA, Australia, Mexico, Brazil, Canada, New Zealand, Europe, Africa, Central America, Russia, Bangladesh, France, Iran, Germany, Kazakistan, Nepal, Qatar, Sri Lanka, United Arab Emirates, Chile, Colombia, Urugay. Bovine Serum
French Origin
Sterile Filtered

Fetal Bovine Serum Australia Source


Foetal Bovine
Serum

Sterile filtered
Origin: South America

Fetal Bovine Serum
(Sterile) — 500mL
(Not for Human or
Animal consumption)
Manufactured from 100%
New Zealand Bovine Material

30 countries

Source: Serumindustry.org

Numbers statistics

- 1 full grown foetus = 1 litre blood = ½ litre serum
- It has been estimated that around half a million liters of raw FCS is produced each year worldwide which equates to the harvesting of more than one million bovine fetuses annually.
- Some sources have suggested that the actual figure may be closer to two million fetuses per year.
- 2008: 700.0000 liters FCS

http://www.humaneresearch.org.au/campaigns/fetal_calf_serum

Demand > supply

Since the demand is greater than the supply, prices have gone up by 300%.

In the EU, welfare standards prevent the transport of animals in the last tenth of pregnancy

Given the quantity of FBS produced globally, it is likely that heavily pregnant animals are routinely transported and slaughtered in countries where no such controls apply.

Processed FBS

- Charcoal-stripped Fetal Bovine Serum
- Heat inactivated
- Pre-selected high quality Fetal Bovine Serum
- Gamma-irradiated serum
- Certified serum
- Qualified serum

Variable composition

Biological product, dependent on geographical and seasonal origin.

From: Fetal Bovine Serum: A Multivariate Standard, Horn Singley and Chavin (1975)

https://doi.org/10.3181/00379727-149-38804

Profile parameters	Hyland	Gibco Lot A	Gibco Lot B	Gibco Lot C	MBA Lot A	MBA Lot B	MBA Lot C	Mean \pm SD
Osmolarity (mosmol)	390	358	340	366	352	327.5	337	353 ± 20.8
K++	23	11.9	6.6	5.6	11.8	1.8	7.2	9.7 ± 6.8
Na++	111.2	112.3	106.1	111.0	102.5	109.7	105.9	108 ± 3.4
CI- *	163	147.6	134.7	149.3	137.4	130.1	136	142 ± 11.4
Ca+1 +	12.4	9.4	15.1	14.7	14.9	15.4	15.5	13.9 ± 2.2
PO ₄ -2 a	10.0	6.3	10.0	9.0	9.0	9.7	10.1	9.2 ± 1.3
Uric acid	2.71	3.04	3.52	4.16	4.58	11.76	3.57	4.8 ± 3.2
BUN [®]	15.5	12.6	16.1	18.4	15.8	13.1	20.4	15.9 ± 2.7
Total bili- rubin ^b	0.25	0.10	0.25	0.24	0.24	0.08	0.11	0.18 ± 0.08
Creatinine ^b	1.40	1.15	3.48	3.48	3.12	0.6	2.32	2.36 ± 1.25
Glucose ⁶	353	382	322	353	316	256	249	318 ± 50
Cholesterol ^a	148	165	48	47	42	29	46	75 ± 56
Total pro- teins	7.97	8.49	3.79	3.87	3.81	3.04	3.70	4.95 ± 2.26
Albumin ^e	2.75	2.15	1.28	1.30	1.19	1.01	1.21	1.55 ± 0.63
ALK phos- phatases	140	37	147	175	205	138	177	146 ± 54
CPK4	417	283	118	164	99	77	152	187 ± 121
LDH4	598	598	460	615	71	132	588	437 ± 236
SGOT4	85	93	39	47	7	2	44	45 ± 35
T.	6.5	3.3	8.9	9.5	8.9	8.0	9.5	7.8 ± 2.2
Total corti- sol	12.5	14.0	7.2	7.7	9.3	9.7	7.0	9.6 ± 2.7
Free cortisol	3.4	1.8	1.0	0.4	0.8	1.4	0.4	1.31 ± 1.04
Corticoster- one*	2.5	0	0	0	0	0.1	0	0.37 ± 0.94
Testosterone/	80	35	47	56	79	32	45	53 ± 19
Insuline	15.0	18.0	8.0	6.0	8.0	8.5	7.0	10.1 ± 4.5
Total gluca- gon ^k	730	845	80	185	70	20	70	$286~\pm~348$
Pancreatic glucagon ^k	258	192	40	48	80	20	42	97 ± 91
ACTH ^a	11.0	48.0	6.0	11.0	11.0	11.0	6.0	14.9 ± 14.8
TSH	1.0	<1.0	1.5	1.25	<1.0	<1.0	<1.0	1.1 ± 0.17
GH (bovine)	70.8	23.2	114.9	140.3	88.6	4.1	167	87 ± 59
FSH*. 1	1.56	1.56	1.56	1.56	1.56	1.56	1.56	1.56
LH ^a	4	2.5	1.5	1.5	1.0	1.0	1.0	1.78 ± 1.1
Prolactin (bovine)	136	21.3	8.2	4.3	15.7	7.5	1.5	$27.7~\pm~48$

Fetal Bovine Serum variability in commercial lots

Issues with the use of FBS

- 1. Animal welfare issues when transported and when blood is collected
- 2. Fraud
- 3. Scientific issues

