In vitro Models to Identify Respiratory Sensitizers -An Update

Arno C. Gutleb

arno.gutleb@list.lu

CONTENT

- Introduction
 - Mouse versus human
 - in vivo versus in vitro "anatomy"
- Air-liquid Interphase (ALI) culture
- Characterisation
- Current standard of testing
- GARDAir (Senzagen)
- "VitralizeMe" (LIST)
- Outlook

Pulmonary models

From simple models to in vivo models

Available models

- in vitro
- in vivo
- ex vivo

Available exposure systems

- Submerged exposure
- ALI exposure + aerosol nebulizer
- ALI exposure + particle sprayer
- Intra-tracheal instillation
- In vivo inhalation
- Ex vivo perfusion

AIR LIQUID INTERFACE

Medium/Low cost

- Medium/High throughput
- Physiologically relevant
- Disease relevant

Mouse versus Human Airways

LIST.lu

Current organisation of the *in In vivo* anatomy of the *vitro* system alveoli

Why Air - Liquid Interphase

? in vitro – in vivo ?

Lacroix et al., 2018 AIVT http://socratic.org/questions/how-does-the-structure-of-the-alveoli-relate-to-its-function-in-the-lungs

Characterization of the 3D in vitro model: structure and functionality

LIST.lu

Klein et al., PFT 2013

SURFACTANT PRODUCTION IN A549 CELLS

Surfactant protein A

Surfactant protein B

Surfactant protein C

SURFACTANT ON ALVEOLAR TYPE II CELLS

Alveolar type II cells

Endothelial cells

Characterization of the 3D in vitro model: structure and functionality

LIST.lu

Current standard of testing?

in vivo model

LLNA assay

EthicsCostsRegulation

in vitro model

Current standard of testing

Models for skin sensitization

LLNA

GARD assay

"VitralizeMe"

Model for chemical irritants/sensitizers

AIM: Develop an *in vitro* model which mimic at best the alveolar barrier to assess the respiratory sensitization potential of different compounds

- Dendritic-like cells (THP-1)
- Endothelial cells (EA.hy 926)
- : Alveolar type II epithelial cells (A549)

 Macrophages (THP-1 differentiated with PMA)

- : Coculture medium
- : Surfactant
- $1_{ }$: Transwell insert

Alveolar macrophages

- Engulf and remove foreign materials by phagocytosis (Sibille and Reynolds, 1990)
- Regulate modulation/suppression DCs activation by IL-10 and/or IL-12 release (Bedoret *et al.*, 2009; Lauzon-Joset *et al.*, 2014; Toussaint *et al.*, 2013).

- Sampling, recognition and processing of antigens by dendrites extension through the epithelial barrier (*Holt et al., 1994;* Gills *al.*, 2012)
- Upon activation up-regulate adhesion and co-stimulatory molecules such as CD54 CD40, CD 80, CD 86, OX40L involved in different phases of immune response (Cumberbatch *et al.*, 1997, Ito 2012, Besnard 2011)

Chary et al., 2019; WO2018/122219 A1

The GARD platform - biological system

GARDair - Identification of chemical

respiratory sensitizers

EU Commission – Flagship Product Health :

"GARDair – The first predictive in vitro assay for the identification of respiratory sensitizers."

€2.4 M in funding

This project has recieved funding from the European Union's *Horizon* 2020 Research and Innovation Programme under grant agreement No 756014.

GARDair - Identification of chemical

respiratory sensitizers

GARDair - coverage of mechanistically

relevant pathways

SENZA GEN

GARDair - in-house validation

8 Performance

Test substance with mean GARD decision value from biological triplicate samples > 0 = Respiratory Sensitizer

Case study: chemical irritants / sensitizers INSTITUTE OF SCIENCE

 \diamond

Selected working concentrations to have around 90% of cell viability

Acr = Acrolein → respiratory irritant PA = Phthallic anhydryde → respiratory sensitizer TMA = Trimellitic acid → respiratory sensitizer

Cytokines pattern

Comparative pattern of effects

	Acrolein		PA		TMA	
	24h	48h	24h	48h	24h	48h
MCP-1	К	=	=	7	=	=
MIP-3a	К	Ъ	7	7	7	7
IL-6	К	Ъ	7	7	7	7
IL-7	7	7	=	=	=	=
RANTES	=	7	7	7	7	7
GM-CSF	К	Ъ	7	7	7	7
IL-10	К	Ы	7	7	7	=

- Definition of respiratory irritation/sensitization markers
- Panel of cytokines able to identify respiratory sensitizers
- Possibility to discriminate between respiratory irritants and sensitizers

LIST.lu

WO2018/122219 A1

Unique set of 11 endpoints

		Chemical	Chemical	Protein
		sensitizer	irritant	sensitizers
Cell surface markers				
	CD54	7	=	=
	TSLPr	7	=	=
	OX40L	=	N	7
Cytokines i	release			
	IL6	7	=	=
	IL7	=	7	=
	IL10	7	=	=
	MCP-1	7	Ы	=
	GM-CSF	7	Ы	=
Gene expre	ession			
	IL1R1-1	7	N	Ы
	CIITA	Ы	7	=
	HLA-DRA	=	7	=

INSTITUTE OF SCIENCE AND TECHNOLOGY

The evolution of the 3D tetra-culture model at "LIST"

2008: Tetraculture 6-w format

Fonds National de la

Recherche Luxemboura

Epithelial cells, mast cells and immuno cells located on the bottom of the well, endothelial cells on the apical side of a Transwell[™] insert. Apical cells cultured in SUBMERGED conditions. 2011: Tetraculture 6-w format Epithelial cells, mast cells and immuno cells located on the apical side of a TranswellTM insert; endothelial cells seeded on the bottom of the well. Apical cells cultured at ALI conditions. 2013: Tetraculture 6-w format Epithelial cells, mast cells and immuno cells located on the apical side of a Transwell[™] insert; endothelial cells seeded on the basolateral side of the Transwell[™] insert. Apical cells cultured at ALI conditions. 2017: Tetraculture 6-w format Epithelial cells and immuno cells located on the apical side of a Transwell[™] insert; endothelial cells seeded on the basolateral side of the Transwell[™] Insert. DC cells on the basolateral side. Apical cells cultured at ALI conditions.

2017: Downscaled triculture (24-w format) Epithelial cells and immuno cells located on the apical side of a Transwell[™] insert; endothelial cells seeded on the basolateral side of the Transwell[™] insert. Reduced number of immune cells Improved shelf life

al in proved shell me

Shippability

Apical cells cultured at ALI conditions.

HORIZON 2020

Moschini et al., 2017 (LIST)

VITROCELL[™] CLOUD CHAMBER

https://www.vitrocell.com/Portals/0/videos/vitrocell-cloud.mp4

Current standard of testing?

Who we are

https://www.google.lu/search?q=lung+puzzle&source=lnms&tbm=isch&sa=X&ved=0ahUKEwje64_xgKrWAhWjC5oKHS4TBkkQ_AUICigB&biw=1536&bih=759#imgrc=SdwDsueAcA3c4M:

Merci villmols

arno.gutleb@list.lu

