In 2009, the U.S. Food and Drug Administration (FDA) acknowledged that the MAT was integrated into general chapter 2.6.30 (“Monocyte Activation Test”) in the U.S. Pharmacopeia (USP) and was to be used as a substitute for the rabbit pyrogen test (RPT). Since its implementation in 2010, the MAT has been used to assess the safety of medical devices. The MAT has been characterized as an MDDT (Medical device Development Tool) that can be used to qualify tools such as pyrogen tests that are used to assess the safety of medical devices.

The MAT is a rapid method that uses an ELISA assay to measure cytokine release from monocytes in response to a test article. It is based on the principle that pyrogenic substances induce a monocyte activation test (MAT) that can be used to detect the presence of pyrogens. The MAT is a sensitive and specific assay that can detect pyrogens in a variety of matrixes, including blood and plasma.

The MAT is performed by incubating monocytes with the test article and measuring the release of cytokines, such as interleukin-6 (IL-6) and IL-1β, into the supernatant. The MAT can be used to detect pyrogens in a variety of matrixes, including blood and plasma.

The MAT is a rapid method that uses an ELISA assay to measure cytokine release from monocytes in response to a test article. It is based on the principle that pyrogenic substances induce a monocyte activation test (MAT) that can be used to detect the presence of pyrogens. The MAT is a sensitive and specific assay that can detect pyrogens in a variety of matrixes, including blood and plasma.

The MAT is performed by incubating monocytes with the test article and measuring the release of cytokines, such as interleukin-6 (IL-6) and IL-1β, into the supernatant. The MAT can be used to detect pyrogens in a variety of matrixes, including blood and plasma.