Computational Fluid Dynamics (CFD)-Based Dosimetry Modeling of the Respiratory System

Development, Application & Future Directions

RICHARD A. (RICK) CORLEY, PH.D.
Greek Creek Toxicokinetics Consulting, LLC
Laboratory Fellow (Retired), Pacific Northwest National Laboratory
rcorley.gctc@gmail.com
Modeling Approaches

✓ Whole-lung modeling
 • MPPD for aerosol dosimetry
 • Other examples
 • ICRP (1994, 2015)
 • NCRP (1997)
 • Trumpet model (Yu, 1978; Robinson and Yu, 2001)

• Site-specific modeling
 • Imaging-based CFD modeling for gases, vapors and aerosols

• Hybrid/multi-scale modeling
 • Combining whole-lung with site-specific modeling
 • Combining CFD with stochastic and idealized airway approximations
 • Combining CFD with individualized MPPD, airway/tissue mechanics, PBPK modeling
What is Computational Fluid Dynamics or CFD?
In a nutshell...

- Numerical method for describing fluid flows
 - Navier-Stokes Equations that describe the flow of a viscous fluid
 - The solution is a flow velocity field over space and time
 - Solved using a 3D computational mesh with appropriate boundary conditions (e.g. shape, mechanical properties, fluid characteristics, pressure, etc.)

- Methods widely used in aerospace, automotive, energy, building HVAC, etc. industries to improve design, trouble-shooting, and decrease costs in product development

Source: Fluent News, 2005
What is CFD?

• Biological applications are a comparatively recent development
 • Heart function, blood flow, fluid-structure interactions

• Why so few biological applications?
 • Can be significantly more difficult to obtain 3D (and 4D) structures and boundary conditions than the physical sciences
 • Math phobes still exist in biology
 • Generally requires inter-disciplinary teams

• Respiratory and Cardiovascular CFD are a rapidly growing area with the advent of new imaging, image analysis, and computational capabilities
Imaging-Based Anatomy

CT Scans: Airways → Black; Bone/Pulmonary Vasculature → White; Tissues → Gray

Rat

Rabbit

Human
Imaging Based CFD Model Development is Now Routine

- 3D/4D MRI and CT
 - Mod-High resolution
 - Dynamic
 - Structure & Function
- What once took months, can now be done in days
- Personalized models are on the horizon

Corley et al. Toxicol. Sci. 128(2012)500-516
Suite of Imaging-Based CFD Models & Data Sets for Model Performance Evaluation
Example Applications of CFD-Based Approaches

• Ex 1: Multi-scale CFD/PBPK for reactive aldehydes
• Ex 2: CFD/aerosol dosimetry for cross-species and IVIVE
• Ongoing/future directions: Multi-scale CFD/Whole Lung/Aerosol dosimetry including disease influences
Ex 1: Multi-Scale CFD/PBPK for Reactive Aldehydes

- Important industrial chemical intermediates, by-products of combustion, endogenously produced, or dietary sources
- Highly reactive, water-soluble vapors, difficult to directly measure in tissues
- Contact site irritation, inflammation, cytotoxicity/degeneration, compensatory tissue remodeling, mutations
- Cytotoxicity & tumors in nasal and upper respiratory tissues of rodents drive many human health risk assessments
 - Systemic effects (e.g. leukemia, neurotoxicity, etc.) following inhalation exposures controversial
- Smoking is a major source for human exposures
 - Published constituent risk comparisons lack species-specific dosimetry considerations
 - Obligate nose breathers vs. human nasal/oral breathing
Ex 1: CFD/PBPK for Reactive Aldehydes
Model Structure

Airway surface is annotated by cell type or region to assign appropriate 1D tissue models.

Each surface facet has its own 2-way coupled PBPK tissue model.

Corley et al. Toxicol. Sci. 128(2012)500-516
Ex 1: CFD/PBPK for Reactive Aldehydes
Surface Flux vs. AUC Tissue Concentrations

Acetaldehyde
(Rat NOAEL = 50 ppm)

Ex 1: CFD/PBPK for Reactive Aldehydes
Comparisons to Human Exposure via Cigarette Smoking

 - Acetaldehyde – 1028 ppm (857 µg/cig)
 - Acrolein – 94 ppm (100 µg/cig)
 - Formaldehyde – 108 ppm (61 µg/cig)

Rat - Human comparisons based upon ‘Hot Spot’ AUCs and Exposure-Duration/#cigs per day Adjustments
Ex 2: CFD/Particle Dosimetry for Cross-Species & IVIVE
Syngenta’s Source-to-Outcome Approach for Pesticide Re-Registration

• Replace requirement for 90-day rat inhalation toxicity study with *in vitro* studies in human cells coupled to enhanced characterization of exposure and target dose relevant to risk characterization (consistent with vision of NAS 2007 and 2012)

In vitro Testing Based Point of Departure using MucilAir™ from Epithelix

- CFD Modeling
- Particle Size Distribution of Inhalable Particles
- Inhalation Exposure

• EPA FIFRA SAP Review Meeting Dec. 4-7, 2018
Ex 2: CFD/Particle Dosimetry for Cross-Species and IVIVE
Syngenta’s Source-to-Outcome Approach for Pesticide Re-Registration

2.7 µm MMAD, 4.03 mg/L Aerosol used in Rat 2-Week Inhalation Study for both species

58.2% inhaled deposited in nose

<1% inhaled deposited in nose
Ex 2: CFD/Particle Dosimetry for Cross-Species and IVIVE
Syngenta’s Source-to-Outcome Approach for Pesticide Re-Registration

58.6% Total Dep (Nose-Trachea)

2.7 µm
Rodent Study MMAD

35 µm
Agricultural Exposure MMAD

<table>
<thead>
<tr>
<th>Diameter (µm)</th>
<th>% Total Deposited (Nose – Trachea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>10</td>
<td>48.8</td>
</tr>
<tr>
<td>15</td>
<td>86.9</td>
</tr>
<tr>
<td>20</td>
<td>95.1</td>
</tr>
<tr>
<td>30</td>
<td>98.9</td>
</tr>
</tbody>
</table>
• Aerosols associated with worker exposures largely deposit in nasal vestibule
 • Peak regional airway exposures at 10-15 µm sized aerosols (excluding vestibule)
 • <20% of regional airway surfaces receive any aerosol deposition at high, 1 mg/L exposure
Ex 2: CFD/Particle Dosimetry for Cross-Species and IVIVE
Syngenta’s Source-to-Outcome Approach for Pesticide Re-Registration

In vitro Testing Based Point of Departure using MucilAir™ from Epithelix

Particle Size Distribution of Inhalable Particles
Inhalation Exposure

CFD Modeling

HEC

Risk Characterization

EPA FIFRA SAP Review Meeting Dec. 4-7, 2018
Ex 3: Hybrid/Multiscale Models beyond CFD/PBPPK
Current State-of-the-Art for CFD/Whole lung Models

- Yin et al. (2010, 2013)
 - Moving 4D CFD plus 1D volume-filling airway skeleton

- Longest et al. (2012, 2016)
 - CFD airways to lobar bronchi coupled with Stochastic Individual Path (SIP) approximations of bronchioles plus acinar moving wall models

- Kolanjiyil and Kleinstreuer (2017)
 - Whole-lung airway model (WLAM) using CFD upper airways to lobar bronchi coupled to adjustable triple bifurcation units (TBUs)
Ex 3: Hybrid/Multiscale Models beyond CFD/PBPK

Current State-of-the-Art for CFD/Whole lung Models

• Our current approach (personalized vs. idealized airways; NIEHS MSM U01 ES028669)
 • Takes advantage of our unique imaging and aerosol database
 • Experimental data on aerosol deposition and 4D imaging in same subjects (rat and human)
 • Included disease and healthy conditions (rat and human)
 • Link CFD/Particle transport models with MPPD, 1D tissue mechanics and viscoelastic acinar ODE models for each individual
 • Incorporate imaging-based tissue mechanics
 • Utilize vasculature for personalized deep lung airway geometries for both CFD and MPPD configurations
 • Moving airways may be evaluated (if possible due to funding limits) but are actively pursued in other laboratories (i.e. Mullins, Perth; Feng, OSU; Lin, UI)
Ex 3: Hybrid/Multiscale Models
Personalized Aerosol Models & Influence of Disease

(1 μm Deposition (Darquenne et al. J. Aerosol Sci. 99(2016)27-39)

Vasculature-guided airways for personalized CFD/MPPD

~35-55% Particles Exhaled

45-65% Particles Deposit in All Airways During Full Breathing Cycle

Disease

Replaces standard assumption of uniform, zero-pressure outlets with individual airway resistance, compliance, pleural pressure, etc. based upon 3D and 4D imaging and measured physiology
Ex 3: Hybrid/Multiscale Models
Personalized Aerosol Models & Influence of Disease

- Mechanics of the lung is implicit in its motion
- Rat model of COPD
 - Elastase-dosed rat (left lobe only)
 - CT images 11 times over 1-sec breathing cycle
 - Develop maps of ventilation and stress/strain relationships
Ex 3: Hybrid/Multiscale Models
Personalized Aerosol Models & Influence of Disease

Aerosol Exposure + 4D/CT + FMS Cryomicrotome

CT-Based Ventilation Maps
FMS Cryomicrotome Images

Non-linear Image Registration

Ex 3: Hybrid/Multiscale Models
Personalized Aerosol Models & Influence of Disease

CT Scans Each Volunteer @ FRC and FRC + 1 L fitted with mask used in studies

Regional (bolus) vs total (continuous) & nasal vs. oral deposition with measured ventilation and +/- Heliox in same position (supine) as CT scans

Continuous Exposure

No Differences in Total Deposition with COPD

0.75 L/s Flow rate

Nasal Breathing

Oral Breathing

Aerosol Bolus Test

Heterogeneities (Dispersion) and Flow Sequences (Mode Shift) with COPD

Bolus Parameters:
Deposition = \(1-\frac{AUC_{\text{ex}}}{AUC_{\text{in}}}\)
Dispersion = \(\left(\frac{H_{\text{ex}}^2 - H_{\text{in}}^2}{0.5}\right)\)
Mode Shift = \(M_{\text{ex}} - V\)

Summary of Key Concepts

• **Time to develop 3D CFD-based models greatly reduced**
 - Imaging and new high-resolution ‘omics are key enabling technologies
 - Software and hardware infrastructure vastly improved over past decade

• **Models based upon realistic anatomy, physiology, physics of airflow, and material transport**
 - Minimizes assumptions and extrapolations
 - Significantly improves resolution in exposure-dose-response assessments
 - May be individualized to evaluate factors controlling variability

• **Animal use can be significantly reduced**
 - A variety of exposure conditions can be simulated across species
 - Exposures can be tested *in silico* before conducting experiments
 - Experimental design can be significantly improved

• **Human equivalent concentrations (HEC) can be determined for points of departure (POD) in both *in vivo* and *in vitro* studies**

• **All models are available**
 - Existing templates enhance new model applications
Acknowledgments

• Pacific Northwest National Laboratory (PNNL)
 • Andrew Kuprat, Sarah Suffield, Senthil Kabilan (*EMD Serono), Kevin Minard (*Spintronics), Rick Jacob, Sean Colby, Dan Einstein (*St. Martin Univ.), James Carson (*Univ. Texas), Charles Ansong

• UCSD
 • Chantal Darquenne

• ARA
 • Bahman Asgharian, Owen Price, Jeff Schroeter, Fred Miller

• Syngenta
 • Paul Hinderliter, Doug Wolf

• University of Washington
 • Robb Glenny

• Presented work funded by
 • NHLBI, NIEHS, Battelle, DOE, Syngenta