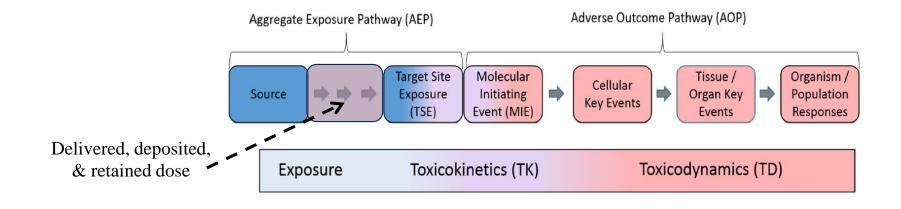


Multiple Path Particle Dosimetry (MPPD) model and its Applications

Bahman Asgharian Applied Research Associates, Inc., Raleigh, NC 02/14/2019

Outline


- Dosimetry modeling
- Modeling approaches
- Description of dosimetry model (MPPD)
- Features of MPPD
- Application of MPPD
 - Example 1: Influence of breathing route & activity level
 - Example 2: Intersubject variability
 - Example 3: Human Equivalent Concentration (HEC)
- Concluding Remarks

Dosimetry Modeling

Computational tool to inform exposure-dose-response models and toxicological risk assessment:

Dosimetry Modeling

Description:

- Mechanistic models based on the physical and physiological parameters that govern transport within the respiratory tract.
- Predicts deposition and retained dose in the lung.

Benefits:

- Computational dosimetry modeling complements/replaces in vitro and inhalation studies.
- Modeling can be faster, cheaper, and can fill gaps not addressed by inhalation studies.
- Dosimetry modeling can be used as a tool for interspecies dose extrapolation.

Modeling Approaches

- **1. Site-specific:** Focus on a small section of the lung to study mechanisms and local effects.
- 2. Whole lung: Consider entire lung geometry to predict regional and total dose
- **3. Hybrid:** Combine 1 and 2 to use best knowledge available for

Comparison of Approaches

Approach	Strength	Challenges
Site-specific	Few assumptionsDetailed 3D modeling	 Unknown boundary conditions (lung ventilation) Requires realistic geometry Cannot model entire respiratory track reliably (Section by section not justified)
Whole-lung	Models entire respiratory tractUsed for risk assessment	Requires various simplifying assumptions.Predicts average deposition.
Hybrid	 Provides a framework for next generation modeling to include emerging data & information. Most accurate predictions 	- Early stages

Whole Lung Modeling

Overview of Major Models:

Semi_empirical

Mathamatical

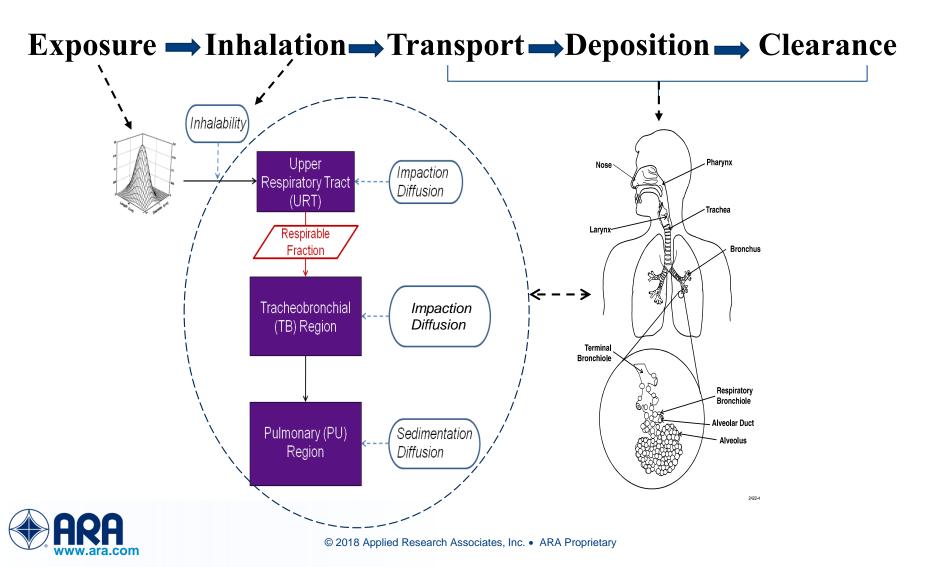
w.ara.com

NCRP

ICRP

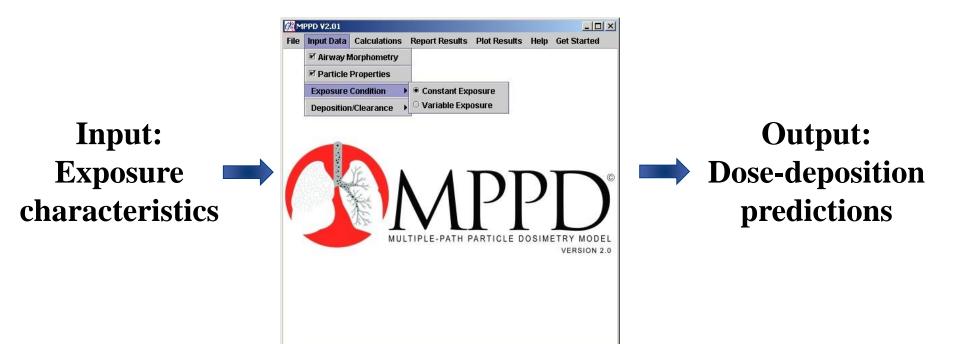
Semi-empirical

MPPD


Deterministic: multiple-path

model:	Semi-empirical	Semi-empirical	Deterministic: multiple-pain
Species	Humans (adults and children), two strains of mouse	Humans (adults and children)	Humans (adults and children), Multiple species
Lung geometry	Symmetric lung geometry, asymmetric recently reported	Symmetric lung geometry	Symetric, 5-lobe symmetric, asymmetric
Particles	monodisperse & polydisperse	monodisperse, polydisperse	monodisperse, polydisperse
Breathing routes	nasal & oral (user can define % each pathway)	nasal & oral (user can define % each pathway or used defaults	nasal, oral, oronasal- normal augmenter, oronasal- mouth breather, endotracheal
Clearance	22 total compartments, 17 for lung and TB airways, one for lymphatic system, and four for extrathoracic airways.	three-compartmental alveolar region plus lymph node	Mechanistic TB Mucous clearance, One alveolar compartment for each VU, lymph node
Interface	Must program	Dos & Windows menu driven	Graphical interface with help menu / tutorials 7

© 2018 Applied Research Associates, Inc. • ARA Proprietary



MPPD Internal Structure

Current State: MPPD

MPPD Inputs

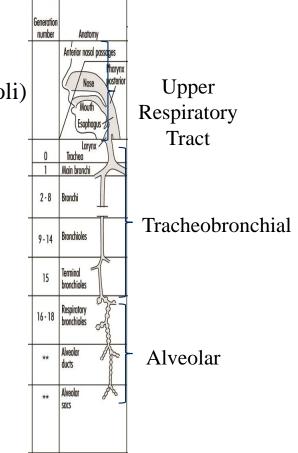
- **Exposure characteristics:** (mass/number concentration with uniform distribution)
- Particle characteristics: dimensions, size distribution, correlation
- **Breathing parameters:** BF and tidal volume
- Breathing routes: nasal, oral, oronasal, endotracheal
- Lung parameters: FRC and URT volumes
- Inhalibility adjustment for particles

MPPD Output

Textual - input parameters, predictions
Graphical - Deposition per generation, lobe, and region
Data files - export to other graphical packages and spreadsheets

Model Predictions

1. Deposition:


- Entire respiratory tract
- Regional (URT, Tracheobronchial, Alveolar)
- By Generation (Trachea -> Bronchi . . . Bronchioles -> Alveoli)
- Lobar (RU, RM, RL, LU, LL)
- -Airway-specific

Adults and children of different age groups Rhesus monkeys, guinea pigs, pigs, sheep, dogs, rabbits

2. Retained dose:

- Airway generation for TB
- Regional for PUL

Human adults (symmetric, asymmetric/stochastic lungs) Rats (Long-Evans & Sprague Dawley) Mice $(B_6C_3F_1 \& BALB/c)$

Metrics for interspecies extrapolation

- Deposition fraction
- Deposited mass (mg)
- Deposited mass rate
- Deposited mass per surface area (mg/cm²)
- Deposited mass flux
- Retained mass (after clearance

(mg/min)

 $(mg/min/cm^2)$

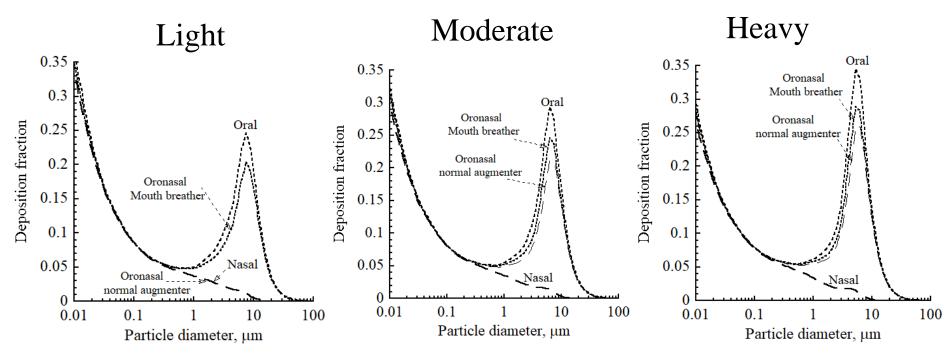
Applications of MPPD

Applications in risk assessment

- Characterizes exposure-dose-response relationship
- Improves interspecies dose-metric adjustment and extrapolation
- Interfaces with PBPK models to predict fate in the body
- Aids in design of inhalation exposure studies

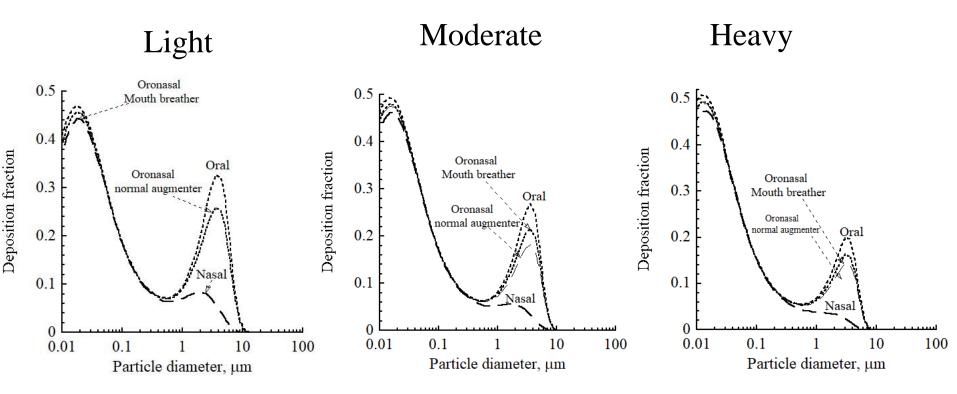
Other Applications

- **Drug delivery:** Aids in drug formulation and assessment of efficacy
- Threat assessment: Prediction of deposition of CBRN (Chemical, biological, radiological and nuclear) agents in the respiratory tract



Example 1 Influence of Breathing Route & Activity Level

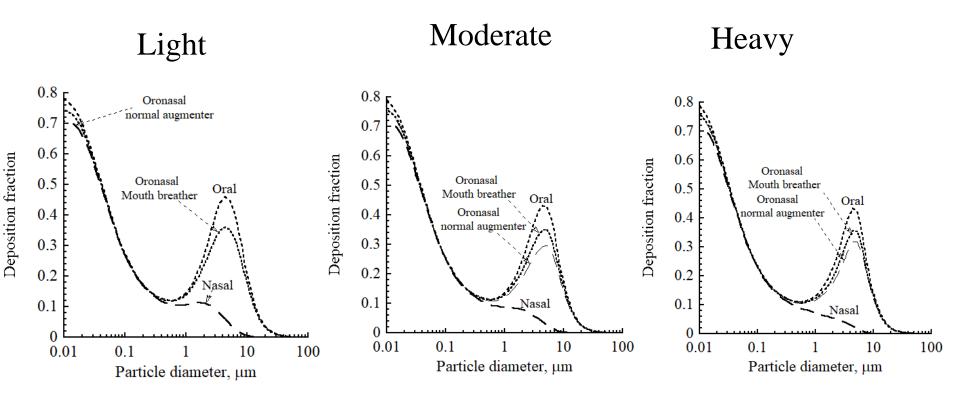
Deposition in TB Region



- Oral→ Mouth breather→ augmente → nasal
- Fine particles ↓ with activity level
- Coarse particles 1 with activity level

Light: BF = 21.9 $\dot{V}_E = 30.3LPM$ $V_T = 1450 mL$ Moderate: BF = 47.4 $\dot{V}_E = 26.5LPM$ $V_T = 1860 mL$ Heavy: BF = 31.9 $\dot{V}_E = 72.3 LPM$ $V_T = 2300 mL$

Deposition in PU Region

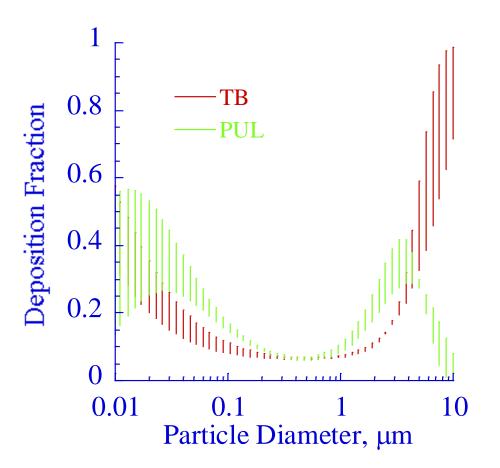

- Oral \rightarrow Mouth breather \rightarrow augmente \rightarrow nasal
- Fine particles the with activity level
- Coarse particles ↓ with activity level

Light: BF = 21.9 $\dot{V}_E = 30.3LPM$ $V_T = 1450 mL$ Moderate: BF = 47.4 $\dot{V}_E = 26.5LPM$ $V_T = 1860 mL$ Heavy: BF = 31.9 $\dot{V}_E = 72.3 LPM$ $V_T = 2300 mL$

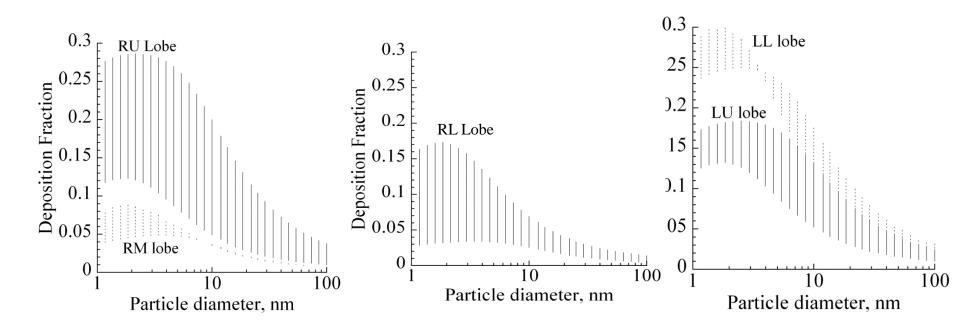
Deposition in LRT

- Oral \rightarrow Mouth breather \rightarrow augmente \rightarrow nasal
- Similar pattern with activity level except for augmenter

Light: BF = 21.9 $\dot{V}_E = 30.3LPM$ $V_T = 1450 mL$ Moderate: BF = 47.4 $\dot{V}_E = 26.5LPM$ $V_T = 1860 mL$ Heavy: BF = 31.9 $\dot{V}_E = 72.3 LPM$ $V_T = 2300 mL$



Example 2 Inter-subject Variability


Regional Deposition Fraction

- Significant variability for ultrafine and coarse particles

Lobar Deposition Fraction

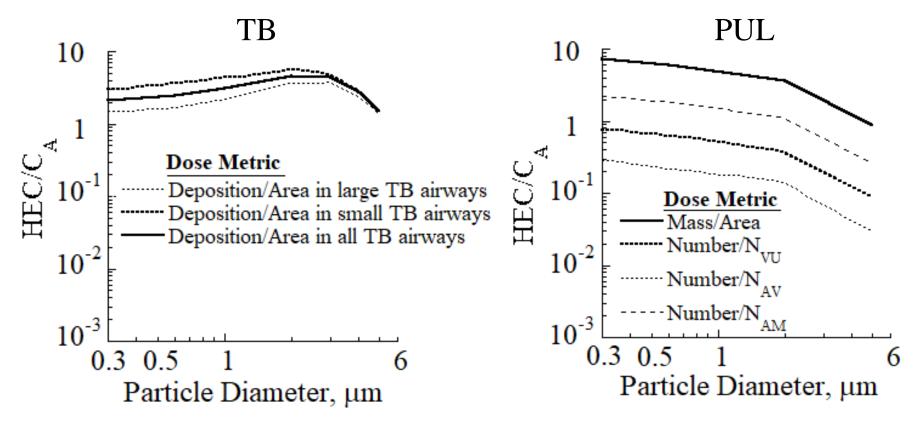
- More variation in RU & RL lobes.
- Highest deposition in RU & LL lobes

Example 3 Human Equivalent Concentration (HEC)

HEC Predictions Based on Deposition

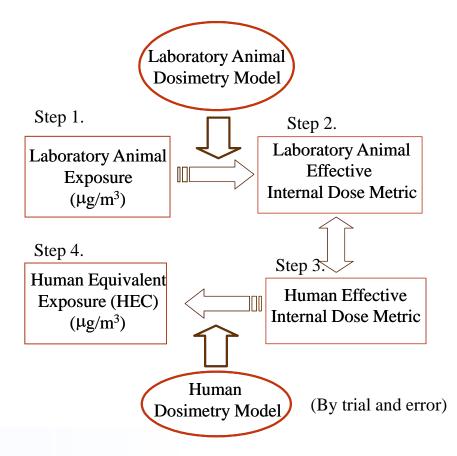
1. Acute exposure:

Dose metric based on deposited mass/surface area


 $\begin{pmatrix} deposited \\ mass \end{pmatrix} = \begin{pmatrix} deposition \\ fraction \end{pmatrix} \times \begin{pmatrix} exposure \\ concentration \end{pmatrix} \times \begin{pmatrix} min \ ute \\ volume \end{pmatrix} \times \begin{pmatrix} exp \ osure \\ time \end{pmatrix}$ $Mass = DF \times C \times \dot{V}_F \times \delta t$ $\left(\frac{\text{Mass}}{\text{SA}}\right)_{\text{H}} = \left(\frac{\text{Mass}}{\text{SA}}\right)_{\text{H}}$ $\implies HEC = \frac{(V_E)_A}{(\dot{V}_F)} \times \frac{(DF/SA)_A}{(DF/SA)_H} \times \frac{\delta t_A}{\delta t_H} \times C_A$

HEC Predictions - Deposition

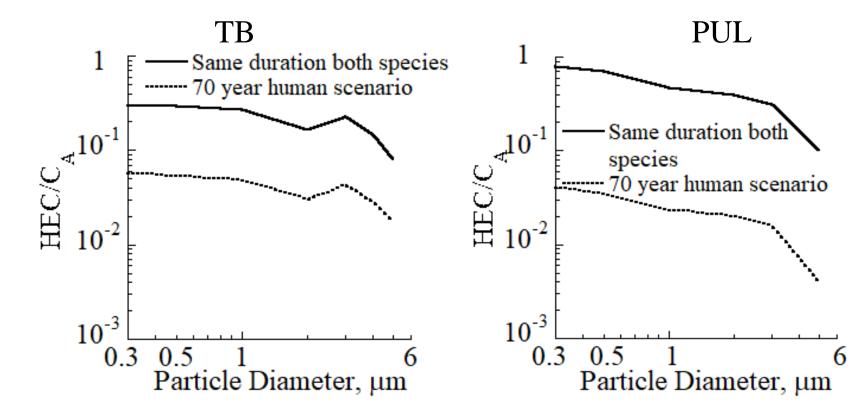
Jarabek, Miller, and Asgharian (2005). Inhal. Tox. 17:317-334.


• HEC/C_A> 1 Using C_A is conservative & vice versa

HEC Predictions Based on Retained Dose

2. Chronic (life stage) exposure

Dose metric based on Retained Mass



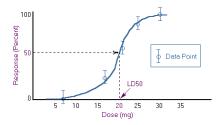
HEC Predictions - Retained Dose

Jarabek, Miller, and Asgharian (2005). Inhal. Tox. 17:317-334.

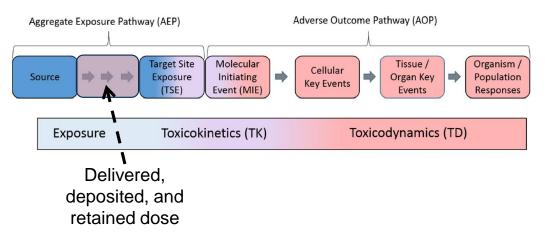
 Assessment based on equal exposure duration leads to over-prediction of exposure and under-prediction of risk

Closing Remarks on MPPD

- Mechanistic. Has potential for extension to different particle types.
- **Deposition Fractions**. Can be predicted in the lungs of humans and several other species.
- Retained dose. Can be found in humans, rats, and mice.
- Interspecies extrapolation. Is based on various dose metrics: Deposition, DF/A in TB, PU, and entire lung.
- Need to include case studies in MPPD Help Menu to aid users in applications of MPPD.

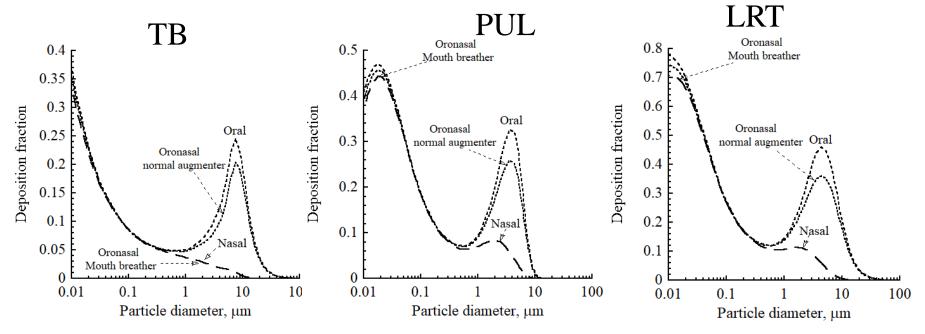


Dosimetry Modeling


Toxicity testing:

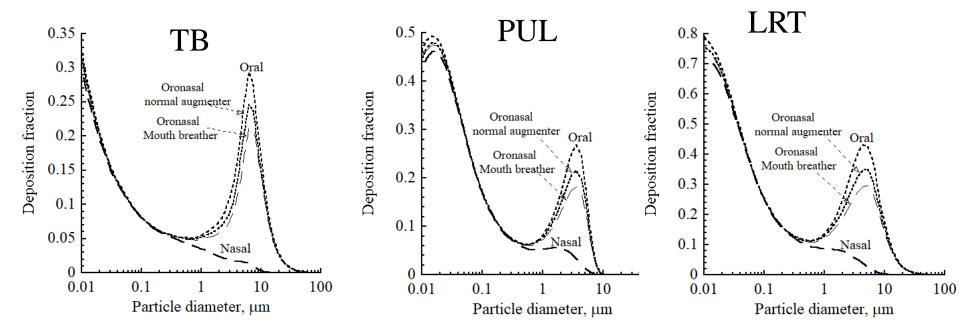
Inhalation toxicity is expressed as point estimate of median lethal concentration (LC50); probit

analysis of E-R data and benchmark dose analysis. It does not offer site or mechanism information.


Non-animal approaches offer a predictive tool for establishing hazard and : Organize existing mechanistic evidence by connecting key events from molecular to population levels based on an adverse outcome.

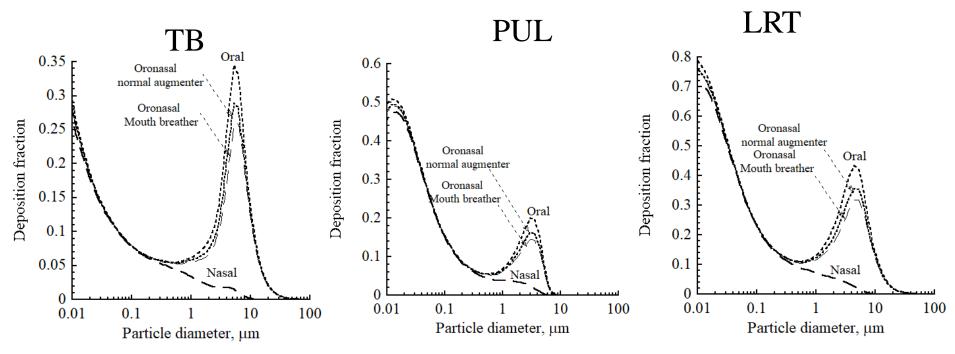
Example 1: Influence of Breathing Route/Ventilation

Light activity ($BF = 21.9, \dot{V}_E = 30.3LPM, V_T = 1450 mL$)


- Deposition of fine particles is independent of breathing route
- Oral and nasal breathing create the bounds
- Normal augmenter is higher than mouth breather

Example 1: Influence of Breathing Route/Ventilation

Moderate activity


 $(BF = 47.4, \dot{V}_E = 26.5LPM, V_T = 1860 mL)$

Example 1: Influence of Breathing Route/Ventilation Heavy activity

 $(BF = 31.9, \dot{V}_E = 72.3 LPM, V_T = 2300 mL)$

