Monocyte Activation Test: A Relevant Alternative Tool for Medical Device Development

Djikolngar Maouyo, PhD

Founder, Managing Director and President

(443) 459-1374; Email: dmaouyo@pyrodextesting.com

PyroDex, LLC

Sinai Hospital BioIncubator, Schapiro Bldg, Ste 203 2401 W. Belvedere Ave, Baltimore, Maryland 21215, USA https://pyrodextesting.com

Public Health Policy: One Fundamental Question

Does the medical device at hand have the potential to cause a damage to the human health?

Some Facets of This Question

- Does the medical device have the potential to negatively impact the biological functions of human bodies?
- Does the medical device carry disease-causing germs or microbes?
- Does the medical device carry other molecular entities that can trigger inflammation in human subjects who are already ill and therefore vulnerable?

Quality Control Tests of Therapeutic Products

Sterility Test

Mycoplasma Test

Endotoxin/Pyrogen Test by BET/RPT

Principle of the Monocyte Activation Test

Pyrogens

- Gram negative endotoxins
- Gram positive non-LPS
- Mycoplasma lipoproteins
- Fungi
- Viruses
- Chemicals/Small molecules
- Impurities

Immune System

Cytokines

- Whole blood
- PBMC
- Cell lines

Detection and quantification of cytokines by ELISA

PyroDex MAT and TLR Ligands

Pattern Recognition Receptor (PRR)	Ligand	Limit of detection
TLR1	Pam3CSK4	3 ng/mL*
TLR2	НКСА	100 cfu/mL
TLR2	HKLM	100 cfu/mL
TLR3	Poly(I:C) HMW	31 ng/mL
TLR3	Poly(I:CP LMW	31 ng/mL
TLR4	USP Reference Standard Endotoxin	0.002 EU/mL
TLR5	Flagellin (FLA-ST)	63 ng/mL
TLR6	FSL-1	156 ng/mL*
TLR7	Imiquimod (R837)	78 ng/mL
TLR8	ssRNA40/LyoVec	78 ng/mL
TLR9	ODN 2006 (ODN 7909)	0.156 μM
*Low dilution tested		

PyroDex MAT and NLR and RLR Ligands

NOD-like receptors (NLR)

Pathogen Recognition	Ligand	Limit of detection
Receptor		
NOD1	Ei-DAP	78 ng/mL
NOD2	MDP	10 ng/mL
NOD2	Murabutide	195 ng/mL
NOD1/2	PGN-ECndi Ultrapure	78 ng/mL
NOD1/2	PGN-SAndi Ultrapure	10 ng/mL
RIGI-like receptors (RLR)		
RLR	3pppdsRNA	10 ng/mL
	3p-hpRNA	10 ng/mL

PyroDex MAT and CLR and CDS Ligands

C-type lectin receptors (CLR)

Pattern Recognition	Ligand	Limit of detection	
Receptor			
CLR	Dectin-1/beta glucan peptide	781 ng/mL	
CLR	Dectin-2/Furfurman	195 ng/mL	
CLR	Mincle/TDM	391 ng/mL	
Cytosolic DNA Sensors (CDS)			
CDS-CDN	dsDNA HSV-60	781 ng/mL	
CDS-STING canonical	3'3'-cGAMP	10 ng/mL	
CDS-STING noncanonical	2'3'-c-di-AM(PS,PS)	625 μg/mL	

MAT as a Replacement for RPT/BET

- MAT is a comprehensive test; it includes all known virulence factors (PAMP and DAMP)
 - Endotoxins
 - Non-endotoxin pyrogens

MAT is biologically relevant

 Human blood cells reflect the human innate immune response to medical device-associated pyrogens in their intended biological environment

• MAT is quantitative

- Highly sensitive
- Large range: 0.002 200 EEU/mL
- MAT is practically adaptable to various targets and scalable
 - The structure of medical devices to be tested is not a limiting factor

MAT and Direct Incubation of Medical Devices

- Prior exposure to depyrogenated water for extraction of pyrogens is not needed
- Direct incubation with culture medium in a volume sufficient to cover the medical device in an adequate culture receptacle

Methodology alteration

- Not currently needed, but there room for improvement
- Incubation for 20 hours is optimal in the current state-of-the art
- ELISA test configuration is flexible, with several dilutions

Device Preparation for Use with the MAT

- No major preparation is needed
- Small- or large-size medical devices
 - Check device dimensions per manufacturer's specifications
 - Identify appropriate recipient/cell culture dish
 - Determine volume of cell culture medium required to cover the material
 - Maintain the optimized cell density

Immune Response to Medical Device Exposure

Inhibited	Basic	Enhanced
 Physiological inhibition Lower cytokine No significant change in cell viability 	 Reference Basic cytokine Viable cells: Viability >80% 	 Pyrogen presence Higher cytokine No significant change in cell viability
ToxicityLow or no cytokineSignificant cell death		

(Viability <50%)

Inhibition/Enhancement Information

- In LAL-based endotoxin test, a Positive Product Control (PPC) is included in the test
- In MAT, PPC is neither needed nor recommended
 - Three false assumptions
 - Homogeneity of receptors (in reality, PRR are a class of 5 families of receptors)
 - Additive effects (consider also synergistic effects)
 - The cytokine release is a linear function
 - Difference between a biological, multifactorial response vs kinetic reaction, more reductionist
- Significance of inhibition in MAT
 - Physiological inhibition: biomarker level below the untreated/unexposed cells (blank or negative control), without significant reduction of cell viability
 - Toxicity-related inhibition: lower level of biomarker and significant cell death
- Potential chemical inhibitors of MAT
 - DMSO used for cryopreservation
 - Preservatives

Cytokine Release Syndrome (CRS)

Characteristic Cytokines (7/39)	CRS Groups	
 IFN-g II-5 	2 out of 7	Treated/Reference
• IL-6	cytokines	
 IL-10 ELT 21 	Severe CRS	≥75
 Fracktalkine 		
• GM-CSF	No CRS	<75

Based on classification by Davila et (2014) and Lee et al (2014)

Stratification of Patients (Davila et al. 2014)

CRS Group	Clinical Characteristics
Severe CRS	 Persistent fever for 3 days Selected cytokine elevations Clinical evidence of toxicity Closer attention Medical and pharmacologic intervention Average hospitalization time: 56.7 days (range: 20 - 104 days)
No CRS	 Low-grade fever and mild cytokine elevations No fever and absent CRS Average hospitalization time: 15.1 days (4-61 days)

Global Perspectives on Pyrogens

LAL Issues: Alternative to animal use

- RPT: Eliminated (Europe)
- MAT: Mandatory (EU and UK)
- rFC: optional

Lead Organization:

- European Pharmacopeia Agencies with practical MAT experience (Dr. I. Spreitzer, PEI):
- ANSM (France)
- FDA (United States)
- Health Canada
- INCQS (Brazil)
- NIBSC (United Kingdom)
- NIFDC (China)
- NIFDS (South Korea)
- NIID (Japan)
- NOMA
- PEI (Paul Ehrlich Institute)
- **RIVM (The Netherlands)**

The MAT: a relevant alternative to RPT/BET

- Comprehensive
- Quantitative
- Versatile and scalable
- Relatively fast

The MAT currently available

- Commercial kits for in-house tests
- Testing service by specialized providers

MAT—Safer medical devices, better treatment, saving more lives