

UL CHEMINFORMATICS SUITE

Craig Rowlands, PhD, DABT Innovation Leader & Senior Toxicologist UL Product Supply Chain Intelligence

UL | Empowering Trust in a Complex World

UL CHEMINFORMATICS SUITE DESIGN

- Uses machine learning to take advantage of extensive increase in publicly available toxicology, biological, phys-chem and structural data
 - Models are trained on GHS classification hazards (H codes)
 - Predicts GHS classifications for 8 endpoints: acute oral & dermal toxicity, skin & eye irritation, skin sensitization, mutagenicity, and acute & chronic aquatic toxicity Acute Inhalation Toxicity endpoint coming in Fall 2018
 - Models use Read-Across Structure Activity Relationship (RASAR) Dat-Fusion that
 - identifies the most similar chemical to the target chemical based on structures, hazards and phys-chem properties
 - does not limit similarity searches to "toxicophore" sub-structures with known toxic mechanisms (i.e., structural alerts)

UL CHEMINFORMATICS SUITE DATA SOURCES

- 250K chemicals with 300K endpoint labels
- 70M Chemical Structures
- GHS classification labels by weight of evidence ٠
- discordance in a chemical label is handled by selecting the most hazardous • value (aka the precautionary principle).

potency

32

15000

ECHA C&L Potency - 68421 Chemical Labels

5000

skin sensitisation

mutagenicity

chronic aquatic

acute inhalation acute dermal

acute aquatic

acute_oral

UL CHEMINFORMATICS SUITE – REACHACROSS MODULE

Data-Fusion Read-Across Structure Activity Relationships (RASAR)

Target Features: 19 categories:

- 1. Acute Toxicity Dermal / Inhalation / Oral
- 2. Hazardous to the aquatic environment acute / chronic
- 3. Skin or Respiratory Sensitization / Corrosion / Irritation
- 4. Serious Eye Damage or Irritation
- 5. Water contact flammable
- 6. Substances and Mixtures corrosive to Metals
- 7. Self-heating Substances and Mixtures
- 8. Reproductive Toxicity
- 9. Pyrophoric Solids / Liquids
- 10. Oxidizing Solids / Gases
- 11. Organic Peroxides
- 12. Hazardous to the ozone layer
- 13. Germ Cell Mutagenicity
- 14. Gases Under Pressure
- 15. Flammable Solids / Liquids / Gases
- 16. Explosives
- 17. Effects on or via Lactation
- 18. Carcinogenicity
- 19. Aspiration Hazard

HTTPS://WWW.ULREACHACROSS.COM/

Interested in learning more about REACH*Across*™ from our experts? Listen to this overview on the tool and how it can help your REACH compliance efforts:

HTTPS://WWW.ULREACHACROSS.COM/

REACHAcross[™] Support-

Welcome to REACHAcross[™] software a reliable digital assistant for REACH compliance.

Offering the best of both worlds, REACHAcross[™] software combines the objective computational approach of a QSAR with the proven acceptability of read-across systems. Generate REACH dossier compliant reports in minutes.

get started. Create Account Sign In	Secure REACH Portal Login		
	Have a REACHAcross [™] account? Email Address	Not registered at REACH <i>Across</i> ™?	
eed assistance? ontact us for technical support.	Password	Welcome to the REACH <i>Across</i> ™ Portal	
		Create Account	
	Log in Forgot Password?		

HTTPS://WWW.ULREACHACROSS.COM/

REACH<i>Across</i>™ My Red	quests New Request	Subscription Plans Support-	U 🖾 Order History 🛛 🛱 My Cart [0]
Request Name	Request Name Req	uest ID 3159	
REACHAcross TM Questions			
	REACHAcro	ss [™] Questions	
View Summary	Chemical: (SMILES o	r CAS Registry Number. REACH <i>Across</i> ™ does not currently use European Community (EC)	numbers to identify chemical structures.)
Enter SMILES code	[K+].O=C([O-])C=1C=C	C=CC1	
	Endpoint Selection:		
Select Endpoint(s)		Document	
		Acute Aquatic Toxicity	
		Acute Dermal Irritation	
		Acute Dermal Toxicity	
		Acute Eye Irritation	
		Acute Oral Toxicity	
		Chronic Aquatic Toxicity	
		Mutagenicity	
		Skin Sensitization	
Coloct Novt	Desite Course and Ma		

Select Next

Back Save and Next >

UL CHEMINFORMATIC SUITE: DATA-FUSION RASAR

Conclusions:

REACHAcross™ v3.1.4 estimates a 61% probability that [K+].O=C([O-])C=1C=CC=CC1 causes acute eye irritation

Hazard	Probability	
Eye Irritation Hazard	61%	
Not Eye Irritation Hazard	39%	

Potency:

UL CHEIMINFORMATICS SUITE - FALL 2018					reprodu	reproducibility	
Nine endpoints: adding Acute Inhalation Toxicity	Broad Domain of Applicability			<u>Correctly Identified</u> True True Positives Negatives		UL Chem Suite	Animal Studies
Endpoint	Total	Coverage %		Se%	Sp%	AC%	AC%
Acute Toxicity-Oral	32411	100		94	86	93	94
Acute Toxicity-Dermal	11252	100		89	94	90	88
Acute Toxicity-Inhalation	11369	100		90	91	90	
Skin Sensitization	7670	100		80	96	84	91
Skin Irritation	46331	100		98	75	97	78
Eye Irritation	15760	100		99	70	98	88
Mutagenicity	3703	100		76	92	88	96
Acute Aquatic Toxicity	10541	100		95	94	95	
Chronic Aquatic Toxicity	17295	100		98	66	98	
UL and the UL logo are trademarks of UL LLC © 2018. P	roprietary & Confidentia	al.					

UL and the UL logo are trademarks of UL LLC @ 2018. Proprietary & Confidential.

Accuracy similar

UL CHEMINFORMATICS SITE IS PEER REVIEWED

Models published in peer reviewed journals

Making Big Sense from Big Data in Toxicology by Read-Across

Thomas Hartung

Johns Hopkins Bloomberg & Global Analysis of Publicly Available

University of Konstauz, CA. Safety Data for 9,801 Substances Registered under REACH from 2008-2014

> Thomas Luechtefeld¹, Alexandra Maertens¹, Daniel P. Russo², Costanza Rovida⁴, Hao Zhu^{2,3} and Thomas Hartung^{1,4}

¹Center for Alternatives to Animal Testing (CAAT). Johns Hopkins Bloomberg School of Public Health, Einers, Salimone. Cauden NJ, USA: ¹Depart Analysis of Publically Available Konstanz, Kenstaz, Germa Skin Sensitization Data from REACH Registrations 2008-2014

> Thomas Luechtefeld¹, Alexandra Maertens¹, Daniel P. Russo², Costanza Rovida⁴, Hao Zhu^{2,3} and Thomas Hartung^{1,4}

¹Center for Alternatives to Animal Analysis of Draize Eye Irritation Health Sciences, Baltimore, MD, 1 Canden, NJ, Vak-² Popartinent of Testing and its Prediction by Mining Publicly Konstauz, Konstauz, Germany Available 2008-2014 REACH Data

> Thomas Luechtefeld¹, Alexandra Maertens¹, Daniel P. Russo², Costanza Rovida⁴, Hao Zhu^{2,3} and Thomas Hartung^{1,4}

¹Center for Alternatives to Animal: Health Sciences, Baltimore, MD, U Canden, NJ, USA: ¹Department of From REACH Registrations 2008-2014

Thomas Luechtefeld¹, Alexandra Maertens¹, Daniel P. Russo², Costanza Rovida⁴, Hao Zhu^{2,3} and Thomas Hartung^{1,4}

¹Center for Altenatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Environmental Health Sciences, Baltimore, MD, USA: ³The Rutgers Center for Computational & Integrative Biology, Rutgers University at Canden, NJ, USA; ³Department of Chemistry, Rutgers University at Canden, NJ, USA; ⁴CAAT-Europe, University of Konstauz, Genstauz, Germany

Thomas Luechtefeld,^a Craig Rowlands^b and Thomas Hartung[®]**

Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility

Tom Luechtefeld *† , Dan Marsh † , Craig Rowlands ‡ and Thomas Hartung $^{*\$}$

*Johns Hopkins University Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, 21205, TLuechte1@jhu.edu, THartun1@jhu.edu †ToxTrack, Baltimore, MD, 21209, tom@toxtrack.com, danmarsh@toxtrack.com *Underwriters Laboratories (UL), UL Product Supply Chain Intelligence, Northbrook, IL, 60062, Craig.Rowlands@ul.com

[§]University of Konstanz, CAAT-Europe, Konstanz, Germany, Thomas.Hartung@uni-konstanz.de

CURRENT: HTTPS://WWW.ULREACHACROSS.COM/

SEPTEMBER 2018: HTTPS://PSI.UL.COM/EN//

Product Supply Chain Intelligence

Products

Solutions - Capabilities -

Learn -

Contact

Contact us

Green Chemistry

Reduce intrinsic hazards and produce safer products

REFERENCES

- Luechtefeld T, Marsh D, Rowlands C and Hartung T. Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility. Toxicological Sciences, 2018, in press.
- Luechtefeld T, Rowlands C and Hartung T. Big-data and machine learning to revamp computational toxicology and its use in risk assessment. Toxicological Research 2018, in press, doi:10.1039/C8TX00051D.
- Luechtefeld T and Hartung T. Computational Approaches to Chemical Hazard Assessment. ALTEX 2017, 34:459-478.
- Hartung T. Making big sense from big data in toxicology by read-across. ALTEX, 2016, 33:83-93.
- Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H and Hartung T. Global analysis of publicly available safety data for 9,801 substances registered under REACH from 2008-2014. ALTEX 2016, 33, 95-109. http://doi.org/10.14573/altex.1510052.
- Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H and Hartung T. Analysis of public oral toxicity data from REACH registrations 2008-2014. ALTEX 2016, 33, 111-122. http://dx.doi.org/10.14573/altex.1510054.
- Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H and Hartung T. Analysis of Draize eye irritation testing and its prediction by mining publicly available 2008-2014 REACH data. ALTEX 2016, 33, 123-134. http://dx.doi.org/10.14573/altex.1510053.
- Luechtefeld T, Maertens A, Russo DP, Rovida C, Zhu H and Hartung T. Analysis of publically available skin sensitization data from REACH registrations 2008-2014. ALTEX 2016, 33, 135-148. http://dx.doi.org/10.14573/altex.1510055.

Thankyou

CHEMINFORMATICS FOR HAZARD DATA NEEDS

- No test material available (e.g., R&D, purchased chemical)
- Animal testing ban (i.e., cosmetics ingredients)
- Reduce animal testing (e.g., sustainability goals)
- Intelligent testing plan design \rightarrow increase success
- Support risk assessment \rightarrow weight-of-evidence

