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Abbreviations

 ADME – absorption, distribution, metabolism, excretion

 AOP – adverse outcome pathway

CFD – computational fluid dynamic model

 IVIVE – in vitro to in vivo extrapolation

MOA – mode of action

MPPD – multiple-path particle dosimetry model

 PBPK – physiologically based pharmacokinetic model

 PK – pharmacokinetics

 PD - pharmacodynamics

1



Pharmacokinetics vs. pharmacodynamics

 Pharmacokinetics - study of  time-course of chemicals in blood or tissues 

What the body does to the chemical

Absorption, Distribution, Metabolism, Excretion (ADME)

Also called biokinetics, kinetics, toxicokinetics

 Pharmacodynamics - study of biological effects of chemicals 

What the chemical does to the body

Also called toxicodynamics, mode of action
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What is PBPK model?
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• Describes physiology of the organism as 

a set of tissue compartments 

interconnected by blood flow

• Mechanistic PK model based on 

biological processes (e.g., metabolism, 

transport, partitioning) 

• Mathematical representation of biology 

and hypothesis ⏤ systems of differential 

equations based on mass balance

• Greater predictive power because of 

the mechanistic basis of the description 

(route, dose, species, system 

extrapolations)



Role of PBPK in 21st century safety assessment
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PBPK model components
 Model purpose/goal – a tiered approach

 Model structure

 Exposure conditions (e.g., inhalation scenarios)

 Physiology

 Biological hypothesis (e.g., metabolism /transport/target tissue)

 Model parameters – IVIVE-based parameterization

 Physiological data (organ weights, blood flows)

 Biochemical data (partition coefficients, metabolic constants)

 Model equations 

 System of mass-balance differential equations

 One equation for each tissue

 Connected by equation for blood
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PBPK for inhalation assessment 
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Understanding exposure at the portal of entry 

and systemic target(s)

 Respiratory tract effects 

 Specific regions in the respiratory tract

 Deposition and metabolic activation 

 Parent and/or metabolites

 Systemic target effects

 Diffusion/transport to systemic circulation (bioavailability)

 Blood air partition, pulmonary metabolism, diffusion/transport to 

blood  

 Parent and/or metabolites
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Key parameters in addition to those for the 

systemic PBPK model

Physiological parameters – lung physiology (blood flow, 
respiratory rate)

Chemical specific parameters – blood to air partition 
coefficient

Biochemical parameters – metabolic constants in a 
specific pulmonary regions and/or pulmonary cells (e.g., 
club cells)
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Css = Cair/[(1/PB)+(QL/QP)*Clint/(QL+Clint)]

Rapid estimation of systemic exposure
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Css = Cair*PB

Css = QP*Cair/QL

for poorly soluble & poorly metabolized (e.g., perchloroethylene),

for soluble & extremely well metabolized (e.g., isopropanol), 

Blood:air partition coefficient (PB); Liver metabolic clearance (Clint);  Ventilation rate 

(QP);  Liver blood flow (QL)

(Andersen, 1981; Clewell et al., 2004; Yoon et al., 2014)

General equation 



Respiratory tract descriptions with different 

complexity in inhalation PBPK models
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 A single homogeneous ‘lung’ in equilibrium with arterial blood 

e.g., vinyl chloride in Clewell et al., 2001

 Addition of metabolism to simple lung compartment 

e.g., dichloromethane in Andersen et al., 1987

 Multi-compartment respiratory tract 

e.g., styrene in Sarangapani et al., 2002; 1,3-butadiene models in 

Campbell et al., 2015

Multi-compartment lung coupled with lung dosimetry models such 

as MPPD, CFD models

e.g., hybrid CFD-PBPK model for naphthalene in Campbell et al., 2014



Vinyl chloride, Clewell et al., 2001

Methylene chloride, Andersen et al., 1987 Benzo[a]pyrene, Campbell et al., 2016

Styrene, Sarangapani et al., 2002
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Nano/particle respiratory tract dosimetry

Benzo[a]pyrene, Campbell et al., 2016 CeO2 nanoparticles, Li et al., 2016
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Importance of capturing cellular exposure and 

kinetics in respiratory tract
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In vitro-based PBPK models for safety and risk 

assessment 
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Opportunities with advanced in vitro lung 

models for inhalation IVIVE-PBPK models

 Advanced in vitro respiratory tract models have promises 

to overcome current limitations 

 metabolic constants measured in whole lung homogenates 

 region and/or cell specific models in appropriate scale/size for 

metabolism/kinetics  

 recapitulating biological fidelity to describe cellular exposure in 

respiratory tract 

 In vitro kinetic modeling is increasingly recognized and 

applied for IVIVE

 in vitro air to cell exposure (e.g., simulation of air chamber 

concentration over time and cell partitioning)

 in vitro specific kinetic behaviors (e.g., particokinetics in 

Hinderliter et al., 2010, Thomas et al., 2018)
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Integrated approaches for inhalation safety 

assessment 

16

Portal of entry 

exposure

Systemic 

exposure 

MPPD

CFD

models

AOP-based in vitro 

respiratory tract or systemic 

target assays

In vitro kinetic assays

Lung metabolism

diffusion/transport

blood air partition

in vitro kinetic assays
Liver metabolism

binding

Transport



References

 Andersen et al., 1987. Physiologically based pharmacokinetics and the risk assessment 

process for methylene chloride. Toxicol Appl Pharmacol. 1987 Feb;87(2):185-205.

 Andersen. 1981. Saturable metabolism and its relationship to toxicity. Crit Rev Toxicol. 

1981 May;9(2):105-50. 

 Campbell et al., 2014.. A Hybrid CFD-PBPK Model for Naphthalene in Rat and Human 

with IVIVE for Nasal Tissue Metabolism and Cross-Species Dosimetry. Inhal Toxicol. 

26(6):333-44.

 Campbell et al., 2015. A Preliminary Regional PBPK Model of Lung Metabolism for 

Improving Species Dependent Descriptions of 1,3-butadiene and its Metabolites. Chem

Biol Interact. 238:102-10.

 Campbell et al., 2016. Predicting Lung Dosimetry of Inhaled Particle-Borne 

benzo[a]pyrene Using Physiologically-Based Pharmacokinetic Modeling. Inhal Toxicol. 

28(11):520-35.

 Clewell et al., 2001. Comparison of cancer risk estimates for vinyl chloride using animal 

and human data with a PBPK model. Sci Total Environ. 2001 Jul 2;274(1-3):37-66.

 Clewell et al., 2004. Evaluation of the potential impact of age- and gender-specific 

pharmacokinetic differences on tissue dosimetry. Toxicol Sci. 2004 Jun;79(2):381-93.



References

 Hinderliter et al., 2010. ISDD: A computational model of particle sedimentation, diffusion, 

and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. Nov 30;7(1):36. 15

 Paini et al., 2017. JRC Workshop “Physiologically-based kinetic modelling in risk 

assessment – reaching a whole new level in regulatory decision-making”

 Sarangapani et al., 2002. Physiologically based pharmacokinetic modeling of styrene 

and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal. Toxicol. 

14:789-834.

 Thomas et al., 2018.  ISD3: a particokinetic model for predicting the combined effects of 

particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. 

Part Fibre Toxicol. 2018 Jan 25;15(1):6. 

 Yoon et al., 2014. Evaluation of simple in vitro to in vivo extrapolation approaches for 

environmental compounds. Toxicol In Vitro. 2014 Mar;28(2):164-70. 

 Zhao et al., 2014. Pharmacokinetic modeling of inhaled cadmium oxide (CdO) 

nanoparticles in pregnant mice to interpret observed developmental effects (Abstract 

#75, 53rd Annual Meeting Mar 22-27, Phoenix, AZ, Society of Toxicology, 2014)


