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Abbreviations

= ADME - absorption, distribution, metabolism, excretion
= AOP - adverse outcome pathway

= CFD - computational fluid dynamic model

= |[VIVE - in vitro to in vivo extrapolation

= MOA — mode of action

= MPPD - multiple-path particle dosimetry model

= PBPK — physiologically based pharmacokinetic model
= PK — pharmacokinetics

= PD - pharmacodynamics



Pharmacokinetics vs. pharmacodynamics

= Pharmacokinetics - study of time-course of chemicals in blood or tissues
= What the body does to the chemical
= Absorpftion, Distribution, Metabolism, Excretion (ADME)
= Also called biokinetics, kinetics, toxicokinetics

= Pharmacodynamics - study of biological effects of chemicals
= What the chemical does to the body
= Also called toxicodynamics, mode of action



What is PBPK model?

Describes physiology of the organism as
a set of tissue compartments
interconnected by blood flow

Mechanistic PK model based on
biological processes (e.g., metabolism,
transport, partitioning)
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Role of PBPK in 215t century safety assessment

PBPK modeling
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PBPK model components

= Model purpose/goal — a tiered approach

= Model structure

= Exposure conditions (e.g., inhalation scenarios)

= Physiology

= Biological hypothesis (e.g., metabolism /transport/target tissue)
= Model parameters — IVIVE-based parameterization

= Physiological data (organ weights, blood flows)

= Biochemical data (partition coefficients, metabolic constants)
= Model equations

= System of mass-balance differential equations

= One equation for each tissue

= Connected by equation for blood
dA /dt=Q, x(C,-C, /P )-V__ xC /P /(K, +C /P) 5



PBPK for inhalation assessment
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Understanding exposure at the portal of entry
and systemic target(s)

» Respiratory tract effects
= Specific regions in the respiratory tract
= Deposition and metabolic activation
= Parent and/or metabolites
= Systemic target effects
= Diffusion/transport to systemic circulation (bioavailability)

= Blood air partition, pulmonary metabolism, diffusion/transport to
blood

= Parent and/or metabolites



Key parameters in addition to those for the
systemic PBPK model

= Physiological parameters — lung physiology (blood flow,
respiratory rate)

= Chemical specific parameters — blood to air partition
coefficient

» Biochemical parameters — metabolic constants in a
specific pulmonary regions and/or pulmonary cells (e.g.,
club cells)



Rapid estimation of systemic exposure

General equation
Css = Cair/[(1/PB)+(QL/QP)*Clint/(QL+Clint)]
for poorly soluble & poorly metabolized (e.g., perchloroethylene),

Css = Cair*PB

for soluble & extremely well metabolized (e.g., isopropanol),

Css = QP*Cair/QL

Blood:air partition coefficient (PB); Liver metabolic clearance (Clint); Ventilation rate
(QP); Liver blood flow (QL)

(Andersen, 1981; Clewell et al., 2004; Yoon et al., 2014) ?



Respiratory tract descriptions with different
complexity in inhalation PBPK models

= A single homogeneous ‘lung’ in equilibrium with arterial blood
= e.g., vinyl chloride in Clewell et al., 2001

» Addition of metabolism to simple lung compartment
= e.g., dichloromethane in Andersen et al., 1987

= Multi-compartment respiratory tract

= e.g., styrene in Sarangapani et al., 2002; 1,3-butadiene models in
Campbell et al., 2015

= Multi-compartment lung coupled with lung dosimetry models such
as MPPD, CFD models

= e.g., hybrid CFD-PBPK model for naphthalene in Campbell et al., 2014
10
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Nano/particle respiratory tfract dosimetry
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Importance of capturing cellular exposure and
Kinefics in respiratory tract
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In vitro-based PBPK models for safety and risk
assessment

In vitro Vmax and Km In vitro Vmax and Km
(or Clint ) (or Clint )
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Opportunities with advanced in vitro lung
models for inhalation IVIVE-PBPK models

= Advanced in vitro respiratory tract models have promises
to overcome current limitations

= metabolic constants measured in whole lung homogenates

= region and/or cell specific models in appropriate scale/size for
metabolism/kinetics

= recapitulating biological fidelity to describe cellular exposure in

TRANSPORT PROCESSES

respiratory tract inion : L

= |n vitro kinetic modeling is increasingly recognized and
applied for IVIVE

= in vitro air to cell exposure (e.g., simulation of air chamber
concentration over time and cell partitioning)

= in vitro specific kinetic behaviors (e.g., particokinetics in -
Hinderliter et al., 2010, Thomas et al., 2018) ISBD: A compiatisaal modsl of gaerkde

sedimentation, diffusion and target cell dosimetry
for in vitro toxicity studies

'—;




Integrated approaches for inhalation safety
assessment

AOP-based in vitro
respiratory tract or systemic
target assays

MPPD
CFD
models

Portal of entry
exposure

Systemic in vitro kinetic assays
e s exposure i i
In vitro kinetic assays B leeré?r?c;i?]bdlsm
Lung metabolism Trdnsp(?r’r

diffusion/transport
blood air partition
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