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Early 2000’s (to Present)
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(R)Evolution (in)of Toxicology

Shift in Focus for Computational Approaches to Extrapolation
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This is an exciting period of transition as new in vitro and computational tools are
developed



» Replace requirement for 90-day rat inhalation toxicity study with in vitro studies in human cells
coupled to enhanced characterization of exposure and target dose relevant to risk
characterization (consistent with vision of NAS 2007 and 2012)
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» Numerical method for describing fluid flows
Bl Navier-Stokes Equations that describe the flow of a viscous fluid
M The solution is a flow velocity field over space and time

M Solved using a 3D computational mesh with appropriate boundary
conditions (e.g. shape, mechanical properties, fluid characteristics,
pressure, etc.)

» Methods widely used in aerospace, automotive, energy, building HVAC,
etc. industries to improve design, trouble-shooting, and decrease costs in
product development (Fluent News, 2005)




What is CFD?

» Biological applications are a comparatively recent development
M Heart function, blood flow, fluid-structure interactions

» Why so few biological applications?

Bl Can be significantly more difficult to obtain 3D (and 4D) structures
and boundary conditions than the physical sciences
B Math phobes still exist in biology
@Generally requires inter-disciplinary teams

» Respiratory and Cardiovascular CFD are a rapidly growing area with the
advent of new imaging, image analysis, and computational capabilities | -
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» 3D/4D MRl and CT ‘ l
B Mod-High resolution ‘Image
B Dynamic ‘ Registration
B Structure & Function

» What once took months,

) Airway/Tissue Mechanics
can now be done in days

» Personalized models are on K CFD Simulation

the horizon

Meshing and
Multiscale
Coupling

Corley et al. Toxicol. Sci. 128(2012)500-516

Corley et al. Toxicol. Sci. 146(2015)65-88 Al Blocki ‘/
Jacob et al. Exp. Lung Res. 41(2014)135-145 Irway blocking
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See webinar by Dr. Paul Hinderliter for CFD-based HEC’s for each aerosol size based upon
human in vitro studies

P
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CFD/PBPK Examples for Reactive Aldehydes
(using existing models and data)
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Acrolein (0.2 ppm, NOAEL)
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CFD/PBPK Examples for Reactive Aldehydes
Simulation of Cigarette Puff (Oral Breathing)

Human Smoking Profile
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» Measured human puff profile (St.
Charles et al. Inhal. Toxicol.
21(2009)712-718)

» Measured smoke compositions (Counts
et al. Reg. Toxicol. Pharmacol.
41(2005)185-227) for representative
puff concentrations

B Acetaldehyde — 1028 ppm (857 pg/cig)
B Acrolein — 94 ppm (100 pg/cig)
B Formaldehyde — 108 ppm (61 pg/cig)

Corley et al. Toxicol. Sci. 146(2015)65-88



Understanding “Delivered Dose” is just as critical for in vitro exposures as it is

for in vivo
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NHLBI LungMAP Consortium
www.lungmap.net

Day 7 Day 14 Adult

LungMAP

Molecular Atlas of Lung
Development Program

» Create an open-access reference
resource and comprehensive molecular
atlas of the late-stage developing lung

B Utilize state-of-the-art molecular and
Imaging technologies to map and

annotate the cell types of the
developing mouse and human lung

» Fill the knowledge gap in | S raY e A REEARCH
molecular/cellular events that drive lung | =z
development (alveologenesis) and cell

function

» Provide tissues, reagents and data to
the medical research community

National Heart, Lung,
and Blood Institute




» Time to develop 3D CFD models greatly reduced
B Imaging and new high-resolution ‘omics are key enabling technologies

B Software and hardware infrastructure vastly improved over past
decade

» Models based upon realistic anatomy, physiology, physics of
airflow, and material transport
B Minimizes assumptions and extrapolations

M Significantly improves resolution in exposure-dose-response
assessments

» Animal use can be significantly reduced
M A variety of exposure conditions can be simulated across species
@® Exposures can be tested in silico before conducting experiments
® Experimental design can be significantly improved

» Human equivalent concentrations (HEC) can be determined for points of
departure (POD) in both in vivo and in vitro studies

» All models are available
Bl Existing templates enhance new model applications




» Pacific Northwest National Laboratory (PNNL)

B Andrew Kuprat, Sarah Suffield, Senthil Kabilan (*EMD Serono), Kevin Minard
(*Spintronics), Rick Jacob, Sean Colby, Dan Einstein (*St. Martin Univ.), James Carson
(*Univ. Texas), Charles Ansong

» University of Washington
@ Robb Glenny
» UCSD
@ Chantal Darquenne
» Syngenta
@ Paul Hinderliter, Doug Wolf
» NHLBI LungMAP Consortium

@ PNNL, Duke, RTI, CCHMC, URMC, Saban Inst., CHLA, USC, UAB, Yale, Pitt, UCSD,
TACC, BCM

» Presented work funded by
@ NHLBI, NIEHS, Battelle, DOE, Syngenta

*Current Location
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