

PETA INTERNATIONAL

Perspectives on the Development, Evaluation, and Application of *in Silico* Approaches for Predicting Toxicity

9 January 2018

This webinar will cover

- Part 1
 - (Q)SARs
 - Grouping approaches, chemical categories, read-across
- Part 2
 - Integrated Approaches to Testing and Assessment (IATA)
 - General framework and where non-testing approaches fit
 - Adverse Outcome Pathways (AOPs) and AOP-informed IATA

Webinars in this series

Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity	Dr. Grace Patlewicz, US EPA Prof. Mark Cronin, Liverpool John Moores University
Skin Irritation and Corrosion	Dr. Gertrude-Emilia Costin, Institute for In Vitro Sciences
25 January 2018, 4–5 pm GMT	Dr. Costanza Rovida, TEAM Mastery and CAAT-Europe
Skin Sensitisation	Dr. Susanne Kolle, BASF SE
1 February 2018, 4–5 pm GMT	Dr. Silvia Casati, EURL ECVAM
Eye Irritation and Corrosion	Dr. Kim Norman, Burt's Bees
15 February 2018, 4–5 pm GMT	Dr. Els Adriaens, Ghent University

Please contact the PETA International Science Consortium Ltd., for assistance in avoiding animal testing

The hub for product safety resources

pisc@piscltd.org.uk www.piscltd.org.uk

Today's speakers

• Dr. Grace Patlewicz, US EPA

Dr Grace Patlewicz is currently a research chemist at the National Center for Computational Toxicology within the US Environmental Protection Agency. She started her career at Unilever UK before moving to the European Commission Joint Research Centre in Italy and then to DuPont in the US. Her research has focused on the development and application of QSARs and read-across for regulatory purposes. A chemist and toxicologist by training, she has also authored over 100 journal articles and book chapters, chaired a number of industry groups, and contributed to the development of technical guidance for QSARs, chemical categories, and adverse outcome pathways under various OECD work programmes.

• Prof. Mark Cronin, Liverpool John Moores University

Dr Mark Cronin is professor of predictive toxicology at the School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK. He has more than 30 years' experience in the application of *in silico* approaches to predicting the toxicity and fate of chemicals as well as in the development of integrated testing strategies for identifying alternatives to whole-animal toxicity testing. His current research includes the application of chemical grouping and read-across to assessing human health and environmental endpoints, particularly the linking of adverse outcome pathways to category formation.

PETA INTERNATIONAL A

Perspectives on the Development, Evaluation, and Application of *in Silico* Approaches for Predicting Toxicity

Grace Patlewicz, NCCT, U.S. EPA, RTP, NC, USA Mark Cronin, Liverpool John Moores University, England

9 January 2018

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA or Liverpool John Moores University

Regulatory drivers

- Societal demands for safer and sustainable chemical products are stimulating changes in toxicity testing and assessment frameworks
- Chemical safety assessments are expected to be conducted faster and with fewer animals, yet the number of chemicals that require assessment is also rising with the number of different regulatory programmes worldwide.
- In the EU, the use of alternatives to animal testing is promoted.
- Animal testing is prohibited in some sectors e.g. cosmetics
- The European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation lays out specific information requirements, based on tonnage level triggers. However, the regulation explicitly expresses the need to use non-testing approaches to reduce the extent of experimental testing in animals.

Regulatory drivers

- REACH-like schemes also have been established in China, South Korea, and Turkey.
- In the US, the new Frank Lautenberg Chemical Safety for the 21st Century Act (LCSA) requires that a risk based prioritisation is conducted for all substances in commerce, some 80,000, many of which are lacking sufficient publicly available toxicity information.
- The LCSA also suggests developing alternative methods to reduce/refine animal testing.
- Risk based prioritization is also an important aspect of regulatory frameworks in Canada (the Domestics Substance List), Australia and the EU.
- Non-testing approaches offer a means of facilitating the regulatory challenges in chemical safety assessment

Aims of this webinar

- To review current practices in the development and assessment of non-testing approaches; focussing on (Q)SAR and read-across
- To provide an overview of integrated approaches to testing and assessment (IATA) and where non-testing approaches fit within such a framework
- To highlight advances in the Tox21 field that are shaping how Adverse Outcome Pathways (AOPs) are informing IATA development and application with particular emphasis on readacross

Outline – Part 1

- Non-testing approaches
- Definitions
- (Q)SARs
- Grouping approaches, chemical categories, read-across
- Frameworks for development and assessment of read-across
- Read-across tools
- Challenges in read-across and research directions

Outline – Part 2

- Integrated Approaches to Testing and Assessment (IATA)
- General framework and where non-testing approaches fit
- Adverse Outcome Pathways (AOPs) and AOP-informed IATA
- Defined approaches (DA) for skin sensitisation in the context of AOP-informed IATA

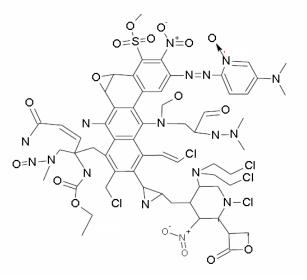
Part 1

Computational (In Silico) Toxicology

- Databases of existing information
- Category formation (grouping) read-across
- Structure-Activity Relationships (SAR)
- Quantitative Structure-Activity Relationships (QSAR)
- Expert Systems
- Bioinformatics
- Chemoinformatics
- Biokinetics (PBPK)

Computational (In Silico) Toxicology

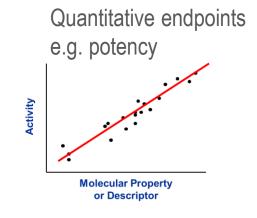
- Bioinformatics
- Chemoinformatics
- Biokinetics (PBPK)

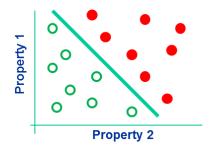


Structure Activity Relationships and Structural Alerts

A SAR is a (qualitative) association between a chemical substructure and the potential of a chemical containing the substructure to exhibit a certain biological effect

E.g. Carcinogenicity alerts reflected in the **"Supramolecule"** Ashby and Tennant (1988) Mut. Res. 204:17-115




Quantitative Structure-Activity Relationships (QSARs)

- A (Q)SAR attempts to relate (statistically or otherwise) the activity of one or more molecules to their physico-chemical properties or structural descriptors
- QSAR can be used to predict:

Qualitative endpoints e.g. active / inactive

PETA INTERNATIONAL A

Collections of (Q)SARs

- An Expert System is a formalised system, usually computerised that enables an end-user to make rational predictions of toxicity based on structure alone
- Expert systems are typically categorised by whether they are underpinned by:
 - empirically based algorithms such as QSARs e.g. TOPKAT, Leadscope
 - knowledge bases such as SARs e.g. Derek Nexus, Toxtree
 - or a hybrid of the two e.g. TIMES, ChemTunes

Regulatory Applications of (Q)SARs

- "Packaged mature knowledge for systematic reuse"
- For data gap filling to provide an estimate for a given (eco)toxicity/e-fate/phys chem endpoint in lieu of testing (replacement or supporting information)
- To rationalise spurious results in experimental data since the (Q)SAR is based on a larger body of data, provides a more compelling Weight of Evidence (WoE) to rationalise the validity of a potential outlier
- Essential for category development and associated read-across justification to provide a context of endpoint mechanistic similarity
- To add another line of evidence as part of a WoE within the context of an IATA

Current Experiences of (Q)SAR Approaches

- As replacements (Q)SARs are most promising for physicochemical, ecotoxicity and environmental fate properties e.g. Log Kow, acute fish toxicity, ready biodegradability.
- (Q)SARs can also be used as "supporting information" in category/analogue approaches or as additional information as part of a Weight of Evidence assessment (WoE) – most progress has been made with (Q)SARs for endpoints such as skin/eye irritation, or genotoxicity endpoints
- (Q)SARs for repeated dose toxicity endpoints are not sufficiently evolved to be used as replacements but can play an useful role in supporting read-across within category/analogue approaches

Regulatory Use of (Q)SARs

- For regulatory purposes, there is an expectation that an assessment of the QSAR model and associated prediction are undertaken
- Under REACH, it is stated that "Results obtained from valid qualitative or quantitative structure-activity relationship models may be used instead of testing when the following conditions are met to indicate the presence or absence of a certain dangerous property".

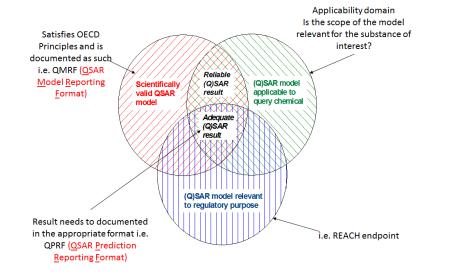


Figure taken from ECHA guidance on QSARs and read-across approaches, 2008

Scientific Validity: OECD Principles for (Q)SAR Validation

- A (Q)SAR should be associated with the following information:
 - a defined endpoint
 - an unambiguous algorithm
 - a defined applicability domain
 - appropriate measures of goodness-of-fit, robustness and predictivity
 - a mechanistic interpretation, if possible
- Principles were agreed by OECD in 2004 and associated guidance was published in 2007

Scientific Validity: OECD Principles for (Q)SAR Validation

- A (Q)SAR should be associated with the following information:
 - a defined endpoint
 - an unambiguous algorithm
 - a defined applicability domain
 - appropriate measures of goodness-of-fit, robustness and predictivity
 - a mechanistic interpretation, if possible
- Principles were agreed by OECD in 2004 and associated guidance was published in 2007

Assessing Applicability Domain to Determine if the Model is Valid for Use for a Specific Substance

- Applicability domain may be characterised using:
 - Descriptors
 - Structural features e.g. fragments, fingerprints
 - Metabolic transformations
 - Mechanistic information
- Tools exist to assess applicability domains
 - e.g. LMC Domain Manager, AMBIT Discovery etc.

Documenting the Model: QSAR Model Reporting Format (QMRF)

- QSAR Model Reporting Format (QMRF) is a harmonised template for summarising and reporting key information on (Q)SAR models, including the results of any validation studies
- The information is structured according to the OECD (Q)SAR validation principles.
- A freely available editor is available:
- <u>http://ihcp.jrc.ec.europa.eu/our_labs/predictive</u> ______toxicology/qsar_tools/QRF
- <u>http://echa.europa.eu/documents/10162/1363</u>
 <u>2/information_requirements_r6_en.pdf</u>

1.QSAR identifier
1.1.QSAR identifier (title):
2.Other related models:
3.Software coding the model:
2.General information
1.Date of QMRF:
2.2.QMRF author(s) and contact details:
.3.Date of QMRF update(s):
A.QMRF update(s):
.5.Model developer(s) and contact details:
2.6.Date of model development and/or publication:
.7.Reference(s) to main scientific papers and/or software package:
.8.Availability of information about the model:
.9.Availability of another QMRF for exactly the same model:
3.Defining the endpoint - OECD Principle 1
.1.Species:
.2.Endpoint:
3.3.Comment on endpoint:
0.4.Endpoint units:
3.5.Dependent variable:
3.6.Experimental protocol:

OMRF identifier (JRC Inventory): To be entered by JR(

OMRF Thie

Printing Date:02-Jul-2012

QSAR Prediction Reporting Format (QPRF)

- The QSAR Prediction Reporting Format (QPRF) is a harmonised template for summarising and reporting substance-specific predictions generated by (Q)SAR models
- QPRF requires information on:
 - The substance
 - General information (e.g. date and author)
 - Description of QSAR according to OECD Principles and how it relates to target substance
 - Adequacy (optional)
 - http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/QRF
 - http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf

The hub for product safety resources

PETA INTERNATIONAL 24

(Q)SAR related resources

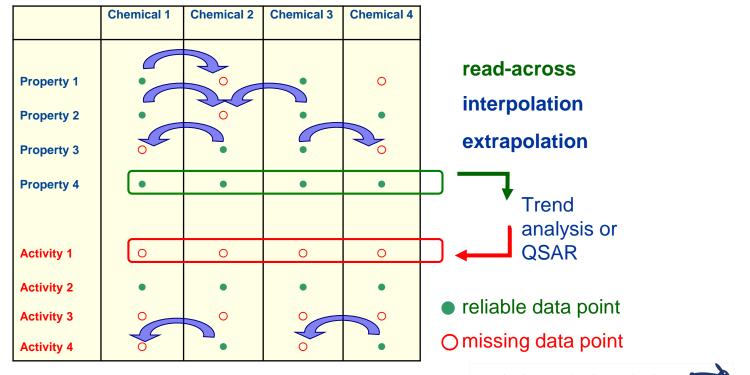
- Since (Q)SARs have become a viable approach to address regulatory purposes, there have been a plethora of tools and resources developed to help facilitate their application.
- The JRC QSAR Model inventory provides a resource to identify well documented (Q)SARs.
- QSARDB is a smart repository for (Q)SAR/QSPR models and datasets, ready for discovery, exploring, citing and predicting (<u>https://qsardb.org/</u>).
- Ochem is a resource for developing new (Q)SARs based on uploaded publicly accessible datasets, or for applying available (Q)SARs (<u>https://ochem.eu/home/show.do</u>)
- US EPA Chemistry Dashboard is a platform to search for substances within the DSSTox inventory, find associated ToxCast/Tox21 data, toxicity/physical property information, QSAR model predictions, literature resources as well as other related links (<u>https://comptox.epa.gov/dashboard/</u>)

US EPA Chemistry Dashboard

- Available at <u>https://comptox.epa.gov/dashboard/</u>
- For substances within the DSSTox inventory (~750,000 substances), model predictions are available for a range of physchem, ecotox and toxicity endpoints
- For some of these endpoints e.g. OPERA physchem models QMRFs are available and prediction reports for specific chemicals are available for download

Crited States Environmental Protection Have						Sear	ch All Dufa	
Chemistry Dashboard		RamicGenner Barr Day a* A A						
Bisphenol A 80-6-7 DTASIOTORI Restrict Neurosen Neuro Restrict Neurosen Neuro Restrict Neurosen Neuro Restrict Neurosen Neuro Hochard Neuro	ound 1 result for 'Bisphenol		Beend All Bills as regard systemic company with the deminant Imail (CH2) the time in community are used 100°	soluble in organic solverb	the group of dig , but poorly welk	beryfmethane ble in water it		

		LogP: Octanol-Water						
LogP: Octanol-Water				Average Median		Range		
Water Solubility		Experimental	3.32(1)		3.32	3.32		
Water Solubility		Predicted			3.29	2.40 to 3.64		
Density	Download as:	TSV Excel SDF						
Flash Point								
Melting Point	Experimental							
During During	Source		Result					
Boiling Point	PhysPropNCCT		3.32	3.32				
Surface Tension		Predicted						
Thermal Conductivity	Source	Source		Calculation	Calculation Details		QMRF	
Vapor Pressure	EPISUITE	EPISUITE		Not Available	Not Available		Not Available	
Manada	NICEATM	NICEATM		Not Available	Not Available		Available	
Viscosity	ACD/Labs Co	ACD/Labs Consensus		Not Available	Not Available		Not Available	
LogKoa: Octanol-Air	ACD/Labs	ACD/Labs		Not Available	Not Available		Not Available	
Henry's Law	OPERA		3.35	OPERA Mo	del Report		Available	
Index of Refraction								

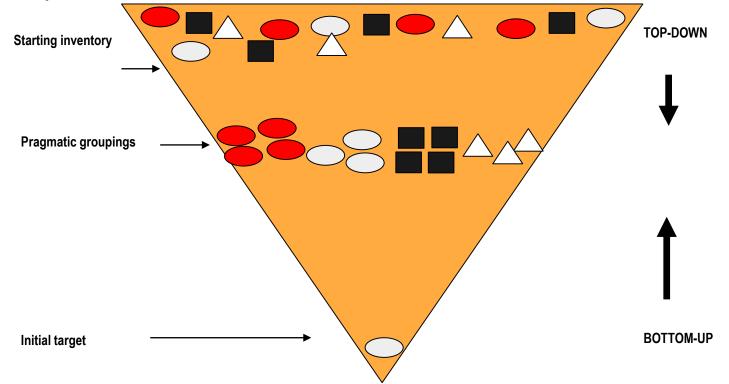

Category Formation (Grouping) for Read-across

- "Analogue approach" refers to grouping based on a very limited number of chemicals (e.g. target substance + source substance)
- "Category approach" is used when grouping is based on a more extensive range of analogues (e.g. 3 or more members) and there may be an apparent trend in property
- Read-across describes one of the methods for filling data gaps in either the analogue or category approaches i.e. <u>not to be</u> confused with the "analogue approach"
- OECD definition: "A chemical category is a group of chemicals whose physico-chemical and human heath and/or environmental toxicological and/or environmental fate properties are likely to be similar or follow a regular pattern as a result of structural similarity (or other similarity characteristics)".

Uses of Read-across

PETA INTERNATIONAL 28

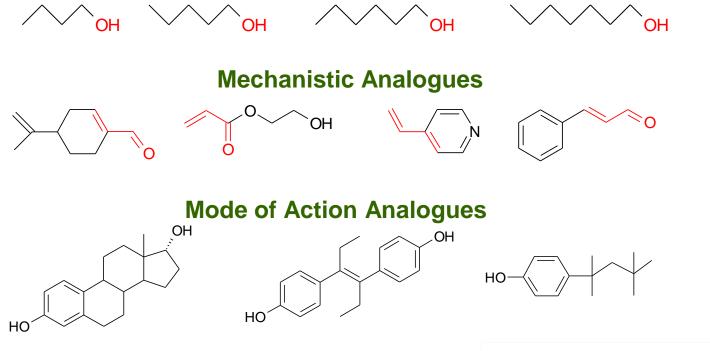
Uses of Read-across


- Read-across application has been more extensive than (Q)SAR for regulatory purposes it probably wasn't recognised and categorised as a "read-across" in each case!
- Examples where "read-across" approaches are applied include:
 - US EPA Provisional Peer Reviewed Toxicity Values (PPRTVs) where data is lacking for a specific substance of interest
 - EPA Test Rules Industry registrants providing information to satisfy a test rule
 - EPA Pre Manufacture Notifications (PMN) QSARs such as those in Epiwin and ECOSAR are routinely used for e-fate and ecotox predictions but read-across is relied upon for non cancer endpoints
 - ASTDR Emergency response values an accidental spill that requires an immediate assessment of acute toxicity for first responders
 - REACH registrations addressing information requirements

Problem formulation/Decision context in read-across

 Decision context is even more important in read-across as the practical approaches can be markedly different

Considerations Before Embarking on a "Read-across"


- Decision context –what level of scientific confidence is needed and how does this impact the level of effort and resources that should be applied
- How many data gaps? And for which endpoints?
- Legitimate access to sufficient, reliable data?
- Plausible hypothesis for grouping substances and ease and cost of substantiating that hypothesis?
- Accurate and credible assessment of the hazards for the substance in question? Is the scientific confidence sufficient for the purpose required?
- Consequence and cost of the read-across approach not being accepted?

Types of Groupings

Structural Analogues

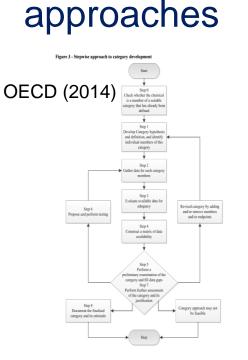
PETA INTERNATIONAL A

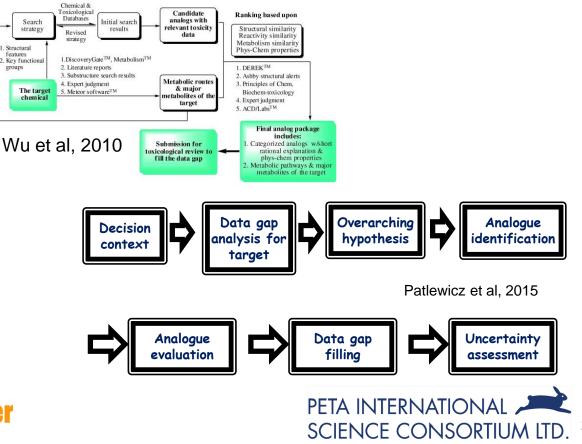
Types of Groupings - 2

- Substances that are **metabolised** to a common molecule
- Substances that are **degraded** rapidly to common products
- The rationale underpinning the category/analogue approach might be based on 1 or more of these rationales

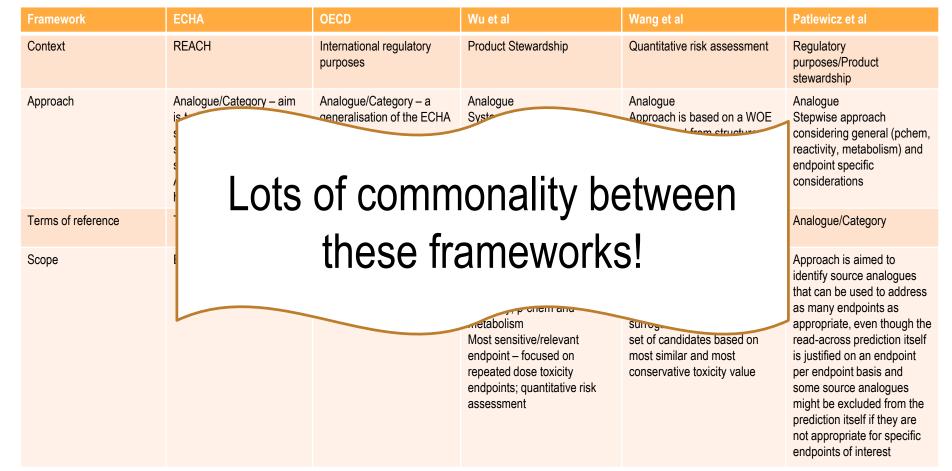
Developing a read-across assessment

- Existing guidance and resources that can be helpful in <u>developing</u> a read-across assessment:
 - Technical regulatory guidance has been published by OECD and ECHA
 - OECD guidance from 2007 was updated in 2014
 - ECHA Chapter 6 QSARs and Grouping of Chemicals as well as practical guides
- However, many papers have been published that complement and augment the regulatory guidance for development of read-across
 - Wang et al (2012) Application of computational toxicological approaches in human health risk assessment. I A tiered surrogate approach (EPA PPRTVs)


Developing a read-across assessment


- Selected literature include:
 - ECETOC TR116 category approaches, Read-across, (Q)SAR
 - Wu et al (2010) Framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate suitability of analogs for SAR based toxicological assessments
 - Patlewicz et al (2013) Use of category approaches, read-across and (Q)SAR general considerations
 - Patlewicz et al (2015) Building scientific confidence in the development and evaluation of read-across
 - Ball et al (2016) Towards Good Read-across Practice

Frameworks for the development of category/analogue



CW+ ChemicalRiskManager The hub for product safety resources

36

Frameworks for the development of read-across

Ongoing issues with read-across

- Although there is much guidance for developing read-across assessment, acceptance still remains an issue, especially for regulatory purposes.
- A key issue thwarting acceptance relates to the "uncertainty of the read-across"
- As such there have been many efforts to identify the sources of uncertainty in read-across, characterise them in a consistent manner and identify practical strategies to address and reduce those uncertainties.
- Notable in these efforts have been the development of frameworks for the assessment of readacross. These allow for a structured assessment of the read-across justification.

Sources of uncertainty in read-across

- Analogue or category approach? (no. of analogues)
- Completeness of the data matrix no. of data gaps
- Data quality for the underlying analogues for the target and source analogues
- Consistency of data across the data matrix concordance of effects and potency across analogues
- Overarching hypothesis/similarity rationale how to identify similar analogues and justify their similarity for the endpoint of interest
- Address the dissimilarities and whether these are significant from a toxicological standpoint e.g. ToxDelta
- Presence vs. absence of toxicity
- Toxicokinetics

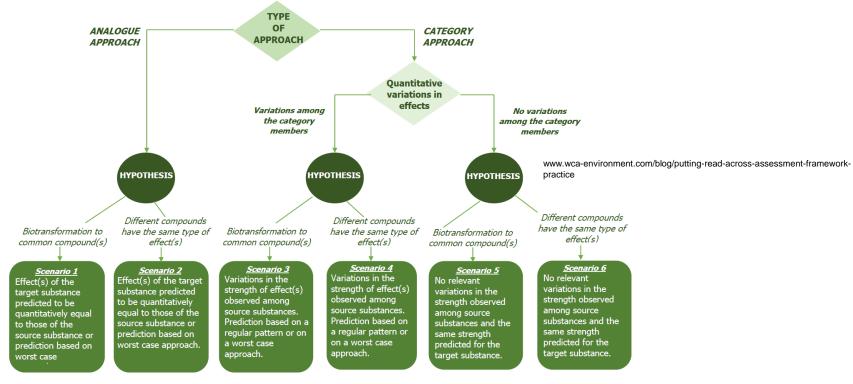
- Blackburn & Stuard (2014)
- Patlewicz et al (2015)
- Schultz et al (2015)
- ECHA RAAF (2015, 2017)
- These aim to identify, document and address the uncertainties associated with read-across inferences/predictions

<u>READ ACROSS UNCERTAINTY EVALUATION QUESTIONNAIRE FOR:</u> Target chemical (SOI) = (<u>list C4S#</u>)

INSTRUCTIONS

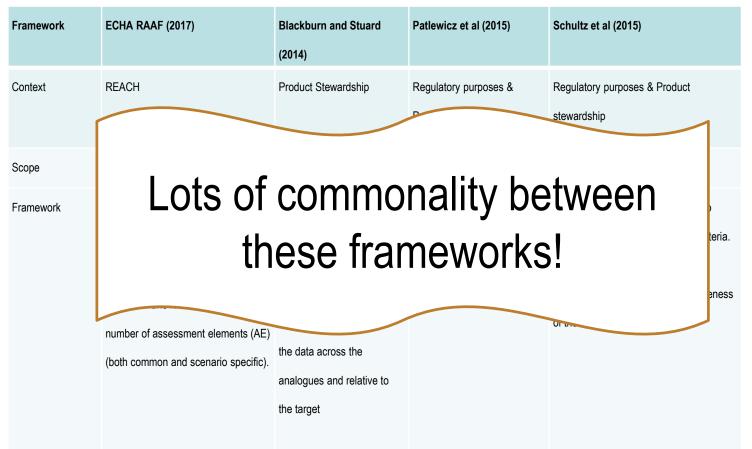
Complete the Questionnaire. Answer the questions for each endpoint where SAR was conducted, and follow instructions listed in each section below. (In general, NO responses indicate potential areas of uncertainty in the proposed read across.) ----

		Responses by Endpoint	Table 2 Scientific confidence considerations in Rea	d-across evaluation
Questions Section I. Chemical similarity between source (ana	Repeat Dose Toxicity logue) and target (SOI)	Reproductive Toxicity	Data issues	Similarity rationale
1. For each endpoint, list the CAS#s of the		ical study for the read across fo	Analogue/category approach	Similarity rationale/hypothesis that underpins the analogue/category
 What is the 'suitability rating' of the and Are any differences in functional groups be more reactive than the target)? Blackburn & Stuard (2014) 	Analogs Suit Suit (skip to se Suit (contributing data Suit (contributing data Suit (contributing data Suit NO UNKNOWN No Differences	Are all features of SOI covered or differences in conservative direction	Completeness of data matrix - No of data gaps e.g. source analogue(s) have many data points to address, target substance has a handful of data gaps. Quality of data for source analogues - e.g. Klimisch scores of 1 or 2 Patlewicz et al (2015)	 approach Metabolic transformation Structural similarity Analogue validity Analogue similarity with respect to general and endpoint specific considerations Rationalization of why structural differences do not impact the toxicity Concordance of effects and potency (if relevant) per endpoint Presence or absence of adverse effects Type of read-across (Qualitative, Quantitative, Trend Analysis) Concordance of effects and potency (if relevant) across endpoints



The hub for product safety resources

- Schultz et al (2015)
- Outlined a strategy for structuring and reporting a read-across
- Defined different read-across scenarios
- Two main aspects tackled:
 - an assessment of the similarity of the source analogues
 - an assessment of the mechanistic relevance and completeness of the read-across (number of analogues, absence/presence of toxicity, quality of underlying data, temporal and dose response relationship between mechanistically relevant endpoints
- Three scale grading of the overall read-across confidence Low, Medium, High



- Six scenarios identified
- For each scenario there will be a number of scientific considerations
- Each is associated with an "assessment element" (AE)
- Each AE is scored from 1-5 where 5 is "acceptable with high confidence" to 1 is not acceptable
- These scores are termed Assessment Options (AO)
- A minimum score of 3 is needed for a read-across to be taken up and used to inform decision making
- There are common assessment elements e.g. reliability of the underlying data and there are scenario specific elements e.g. common underlying mechanism for scenario 2

Ongoing issues with read-across

- These frameworks allow for a structured assessment of the read-across justification.
- The next step is how those uncertainties can be addressed
- One approach per Blackburn and Stuard (2014) is to use assessment factors
- Alternatively the RAAF and the work by Schultz et al (2015) advocate the use of New Approach Methods (NAM) (e.g. High Throughput Screening (HTS) data) to enhance the scientific confidence of a read-across
- Examples have been published by Schultz (2017) and colleagues
- These examples rely on the qualitative use of NAM data and preferably in the context of an organising framework such as an AOP to ensure the appropriate biological context for interpretation (see Part 2)
- Others such as Shah et al (2016) have explored quantifying the uncertainties of read-across and using NAM data in conjunction with chemical structure information in a 'QSAR-like' read-across (Generalised Read-Across [GenRA])
- Some of these efforts have been implemented into read-across tools

Selected read-across tools

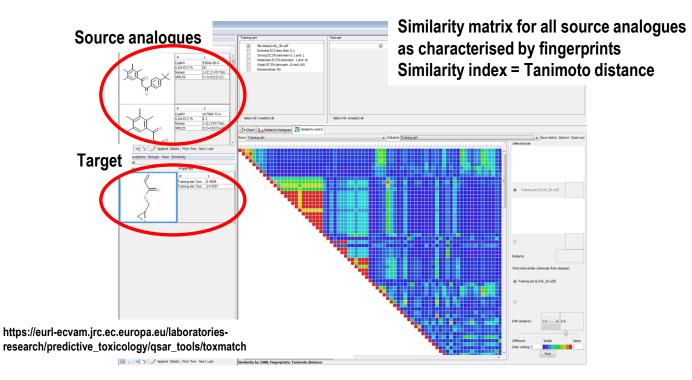
Tool	AIM	ToxMatch	AMBIT	OECD Toolbox	CBRA	ToxRead	GenRA
Analogue identification	X	X	X	X	Х	X	X
Analogue Evaluation	NA	X	X by other tools available	X	X	X For Ames & BCF	NA
Data gap analysis	NA	X	X Data matrix can be exported	X Data matrix viewable	NA	NA	X Data matrix can be exported
Data gap filling	NA	X	User driven	X	X	X	X
Uncertainty assessment	NA	NA	NA	X	NA	NA	X
Availability	Free	Free	Free	Free	Free	Free	Beta for Internal testing

Selected read-across tools

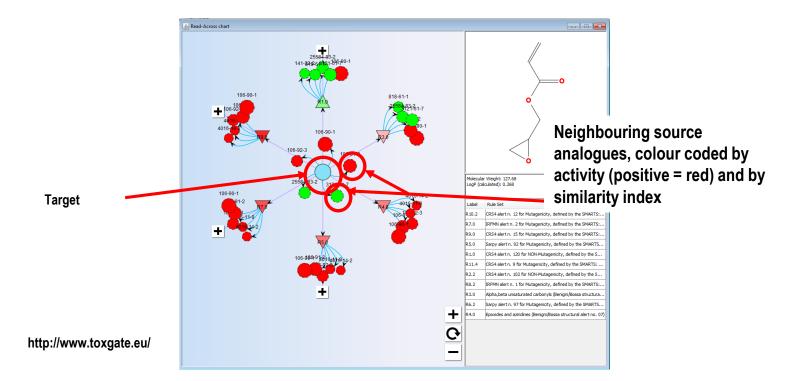
The hub for product safety resources

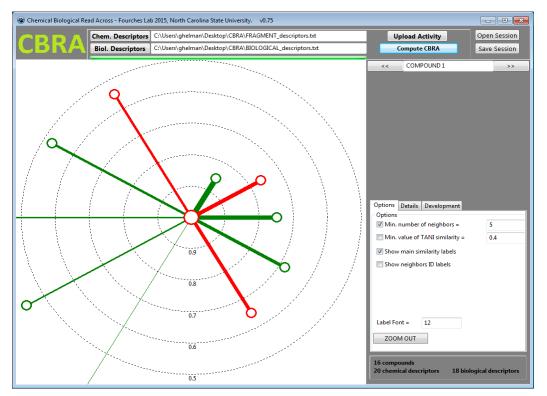
OECD QSAR Toolbox

- A software tool which facilitates the development, evaluation, justification and documentation of chemical categories for read-across
- Software workflow mimics that described in the OECD and REACH guidance on categories
- Contains regulatory inventories and data plus "profilers" which encode SAR type information which represent molecular initiating events (MIEs) within Adverse Outcome Pathways (AOPs)
- Profilers include those for "DNA Binding", "Protein Binding", "Aquatic toxicity MOAs" etc. hence works best for skin sensitisation, mutagenicity and aquatic toxicity endpoints
- Ongoing development is focusing on how to implement new MIEs and AOPs into the Toolbox to facilitate read-across for repeated dose toxicity endpoints
- First AOP implemented into the OECD Toolbox skin sensitisation

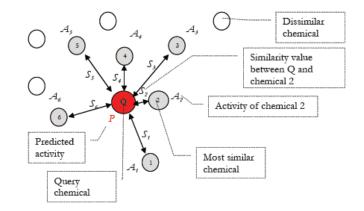

Selected read-across tools: OECD QSAR Toolbox

	Delete	egory Definition + Data Gap Filling	► Report	Sou	Source substances					
Opfine Opfine<	ering Delete Delete All	Target	e e	 	<u>بکوتر</u> او	e Korr]7 	ا <u>ہ</u> مہر)• 	
US-EPA Nev Chemical Categories Database Affliation Inventory Affliation CECD PPV Chemical Categories Substance Type EINE	rrosion (101/275)	M: not irritating, moderately irritating, n	M: not irritating, no	M: carrosive, carro		M: irritating, corros.	M: slightly initating.	M: moderately init	~ 2	
US-EPA New Chemical Categories General Nechanistic Biodeg Bird/Chalf Afe (Biowin) Biodeg prickality (Biowin 1) HDRespiratory	se Toxicity (69/6204)	M: 300 mg/kg bw/day (nominal), 0.5 mg/L	M: 15 mg/kg bw/d	M: 10 mg/kg bw/d		M: 55 mg/kg bw/d	M: ≥124 mg/kg bw	M: 20 mg/kg/day,	M: 3.33 m	
Biodeg probability (Bown 2) Biodeg probability (Bown 5) Biodeg probability (Bown 6) Biodeg probability (Bown 7) Biodeg mobability (Bown 7)						M: 4.55 mg/L, 11.7.	M: <121 mg/L, <1	M: sensitising, <4		
DPRA Cysteine peptide depletion	ative Methods (1/1) er Test (5/5) ned Intracutaneous and Topical S (1/1)						M: not sensitising			
advalut avaalfia	Reaction Pattern (1/1) Test (2/2) I's Complete Adjuvant Test (12/14)					M: NOT_SPECIFIED	M: not sensitising M: sensitising			
milarity rationala 🦷	a Pig Local Lymph Node Assay (1/1) a Pig Maximisation Test (46/64)		M: not sensitising,	M: sensitising		M: NOT_SPECIFIED M: 4E3 µg/cm2, 1	M: not sensitising M: not sensitising,	M: sensitising M: 400 µg/cm2, 1		
Protein binding by OECD	(M: Positive	M: Positive	M: Negative	M: Positive M: sensitising		
Toxic hazard classification by Cramer (ong Ultimate biodeg Biodeg BioHC half-Alfe (Biowin) Biodeg BioHC half-Alfe (Biowin)	ization Test and Observations of (1/1) Ilaneous (44/62) ed Draize Test (1/1) ed Maximization Test (1/1)					M: Positive, Positiv.	M: Positive, Positive	m. sensidsling		
Defined Categories Document	Ear Swelling Test (4/4) Local Lymphnode Assay (LLNA) Sensitisation (45/4)					M: NOT_SPECIFIED		M: sensitising		
-⊞No Dat -⊞Open B	ta (1/ Epicutaneous Test (5/	Data gap					M: not sensitising			


Selected read-across tools: Toxmatch


Selected read-across tools: ToxRead

Selected read-across tools: CBRA


Generalised Read-Across (GenRA)

•GenRA (Generalised Read-Across) is a "local validity" approach

•Predicts toxicity (toxicity binary outcomes observed from different study types) as a similarityweighted activity of nearest neighbors based on chemistry and/or bioactivity (HTS) descriptors

•Generalised version of Chemical-Biological Read-Across (CBRA) developed by Low et al (2013)

•Systematically evaluates read-across performance and uncertainty using available data

Generalised Read-Across (GenRA)

I. Data

1,778 Chemicals 3,239 Structure descriptors (chm) 820 Bioactivity assays (bio) ToxCast 574 Apical outcomes (tox) ToxRefDB II. Define Local neighborhoods

Use K-means analysis to group chemicals by similarity Use cluster stability analysis ~ 100 local neighborhoods

III. GenRA

Use GenRA to predict apical outcomes in local neighbor hoods Evaluate impact descriptors (chm, bio, bc) on prediction Quantify uncertainty

Use GenRA to predict the similarity weighted toxicity scores

for each:

Toxicity type (β)

Descriptor ={chm,bio,bc} (α)

No. of nearest neighbors (k)

Similarity score threshold (s_{ii}^{α})

Calculate performance by comparing predicted y^{tox} and true x^{tox} for all chemicals using area under ROC curve (AUC)

$$v_i^{\beta,\alpha} = \frac{\sum_{j=1}^{k} s_{ij}^{\alpha} x_j^{\beta}}{\sum_{j=1}^{k} s_{ij}^{\alpha}}$$

Jaccard similarity: $s_{ij} = \frac{\sum_{l} (x_{il} \land x_{jl})}{\sum_{l} (x_{il} \lor x_{jl})}$ $\alpha \in \{chm, bio, bc\}$ $\beta \in \{bio, tox\}$ $y_i = predicted activity of chemical(c_i)$ $x_j^{B} = activity of c_j in \beta$ $s_{ij}^{\alpha} = Jacccard similarity between x_i^{\alpha}, x_j^{\alpha}$ k = up to k nearest neighbours

Selected read-across tools: GenRA

NN By: chm_mrgn v K: 10 v Sel by: tox_txrf v			f 🔻 Si	ummary:		Grp: to	Grp: tox_txrf v By: study v Read-across						
Triethylene glycol					-					z			
					fox_for chm_c bio_fxc bio_fxc		N,M Det 2-M 2-1 1 1 2-(†						- è
GenRA 🔻 🕅	1in+: 0 v Mi	in-: 0 v	Filter by: E	nter text		Sim	vt 🗌 🖾	oort					
	· · · · · · · · · · · · · · · · · · ·					···· •	aa a	043 Q					
				-	~~~~~		~~~	~~~		~J.	~~~		
	2-Methoxyethano Et	thylene glycol 2-B	utoxyethano Trie	thylene gly 2	(Hexyloxy)eth Is	opentyl alcoh	2-Butyne-1,4-di		2-Methyl-1-prop	N,N-Diethyletha Di	iethanolamine		
CHR:Adrenal Gla													
CHR:Body Wei		_									_		
CHR:Bone Marr											_		
CHR:Clinical Sig	ins												
CHR:Hematolo	gy												
CHR:Kidr	ley												
CHR:Li	/er												
CHR:Lu	ng												
CHR:Morta	lity												
CHR:No	se										~		

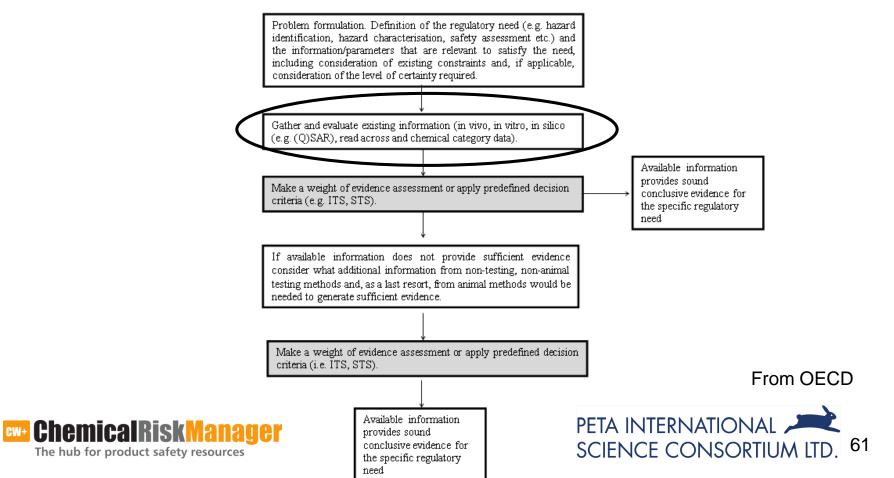
Part 2

Integrated Approaches to Testing and Assessment (IATA)

- "IATA is a means of organising and analysing all the available relevant data on a given substance or group of substances coupled with mechanistic, exposure, and dosimetry information where possible, to focus testing when needed and facilitate an assessment conclusion" – OECD definition
- "Integrated Testing Strategies (ITS) are approaches that integrate different types of data and information into the decision-making process. In addition to the information from individual assays, test batteries, and/or tiered test schemes, integrated testing strategies may incorporate approaches such as weight-of-evidence and exposure/population data into the final risk assessment for a substance"
- http://www.alttox.org/ttrc/emerging-technologies/its/

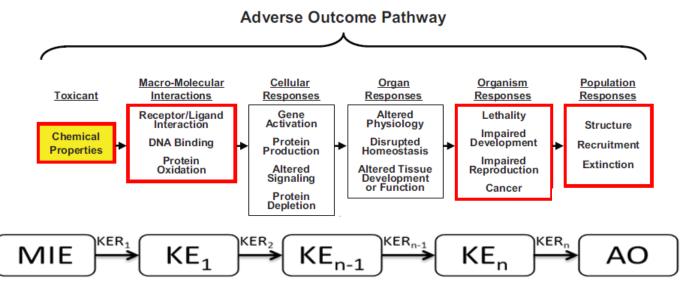
Integrated Approaches to Testing and Assessment (IATA)

- In practice:
 - "A means of integrating existing data and non-testing data, determining what new information needs to be generated in order to make a decision"
- Some IATA are more complex than others but the generic building blocks of considering existing data, *in vitro* methods, non-testing approaches BEFORE instigating new *in vivo* testing are the same
- Non-testing approaches fit within the context of these IATA schemes and should not be considered *in vacuo*


Typical Information within an IATA

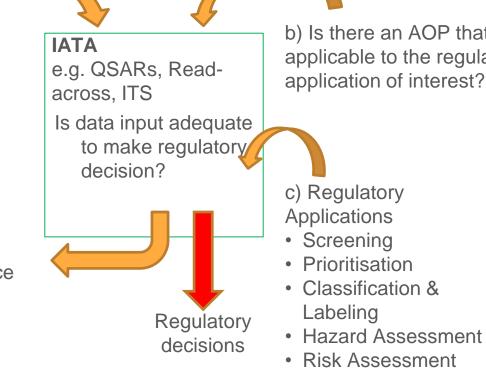
- Historical information on the chemical of interest
- Non-standard *in vivo* tests
- Information from "similar" chemicals
- Predictions from other non-testing approaches such as (Q)SAR
- In chemico tests
- In vitro tests
- Molecular biology, -omics
- Exposure, (bio-)kinetics

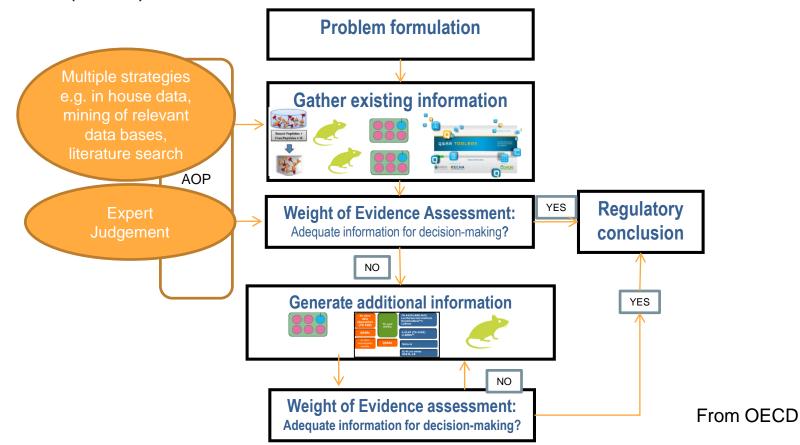
General framework of an IATA


Mechanistic based and AOP-informed IATA

- As noted earlier, there is a shift towards non animal alternatives as a response to regulatory drivers
- Integration of different non-animal approaches requires an organising framework to ensure that the different information sources are being interpreted in their appropriate context. This is particularly relevant for New Approach Methodologies (NAMs).
- AOPs serve to provide this organisational framework and hence play an important role in developing and applying IATA for different purposes as well as provide a roadmap for future QSAR development
- AOPs provide the linkage from chemistry, through the Molecular Initiating Event (MIE) to Adverse Effect
- Data from key events provides support to, and will enhance, read-across especially for regulatory acceptance as well as supports definition of domains for MIEs

AOPs


An AOP represents existing knowledge concerning the sequence of events and causal linkages between initial molecular events, ensuing key events and an adverse outcome at the individual or population level.


AOP-informed IATA

a) What existing data and data types are available? Additional Data, Method Needs Insufficient confidence What AOP-IATA tools/assays can be applied or need to be developed to generate data to make the decision?

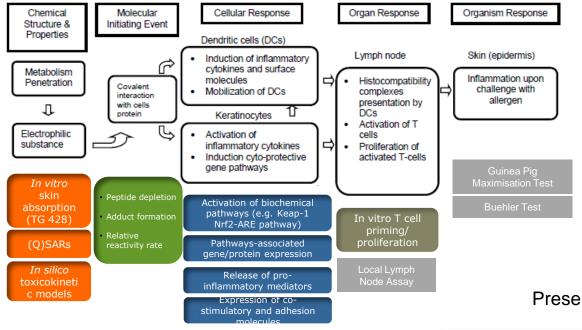
b) Is there an AOP that is applicable to the regulatory application of interest?

General workflow in Integrated Approaches to Testing and Assessment (IATA)

Defined approaches within IATA

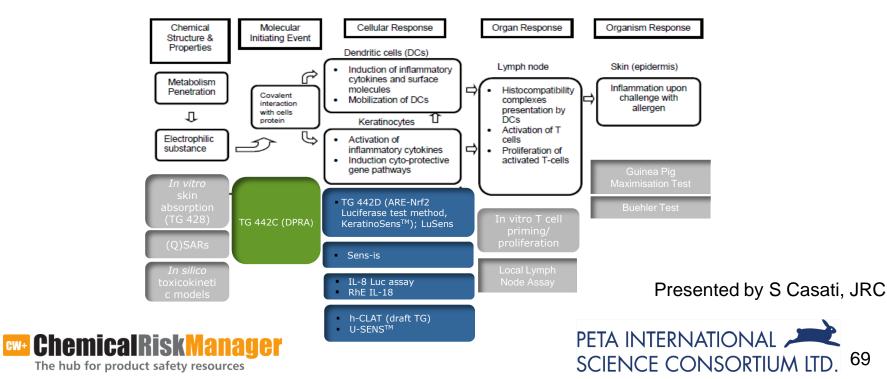
- A <u>defined approach</u> to testing and assessment consists of a <u>fixed data interpretation</u> procedure (DIP) used to interpret data generated with a <u>defined set of information sources</u>, that can either be used alone or together with other information sources, to satisfy a specific regulatory need.
 - Guidance Document on the Reporting of Defined Approaches to be Used within
 Integrated Approaches to Testing and Assessment <u>ENV/JM/MONO(2016)28</u>
 - Guidance Document on the Reporting of Defined Approaches and Individual Information Sources to be Used within Integrated Approaches to Testing and Assessment (IATA) for Skin Sensitisation <u>ENV/JM/MONO(2016)</u>

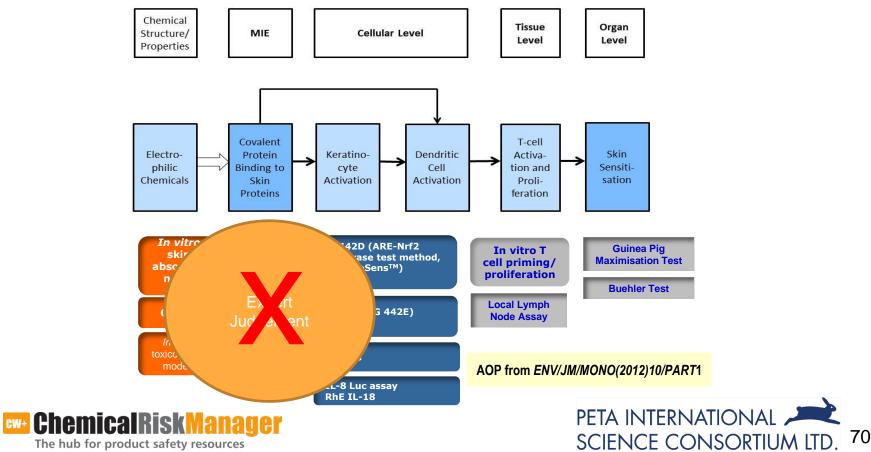
Defined approaches within IATA


- Work currently underway within the OECD is aiming to establish Performance-based Defined Approaches for skin sensitisation
- Aims to **substitute** the need for animal testing for skin sensitisation based on a combination of methods which predict key endpoint responses in the AOP
- DA will be evaluated based on their performance using the same data sets/reference chemicals for the endpoint of interest

Defined approaches within IATA: Skin sensitisation

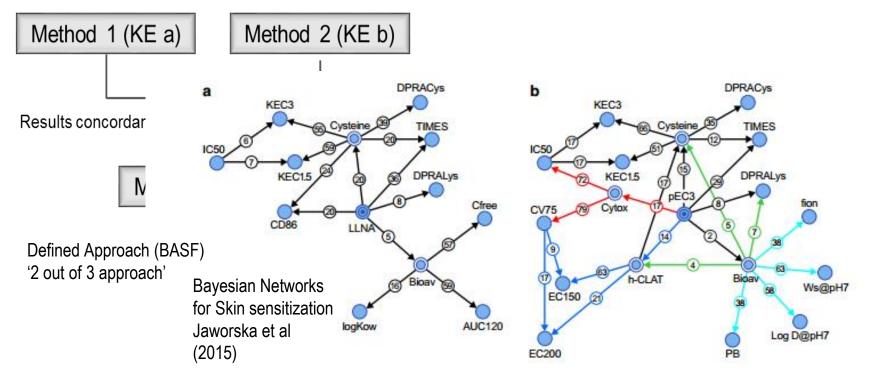
AOP and available toolbox of non-animal methods


Presented by S Casati, JRC


Defined approaches within IATA: Skin sensitisation

AOP and some of the more advanced non-animal methods (i.e. OECD

adopted, evaluated or under evaluation in ring trials)



Defined approaches within IATA: Skin sensitisation

https://aopwiki.org/wiki/index.php/Aop:40

Defined approaches for skin sensitisation examples

PETA INTERNATIONAL A

Take Home Messages - 1

- QSARs are most effectively used for ecotox, efate and physchem endpoints as replacement values and as supporting information for "simpler" mammalian endpoints within an IATA.
- The OECD principles provide a framework to assess a QSAR model and its prediction and document both.
- Many QSAR resources exist to identify QSARs, make/extract predictions, or develop new models.
- Read-across tends to be more routinely relied upon for "more complex" endpoints such as repeated dose 28 day or developmental toxicity screening tests an analogue/category approach is likely to be more effective an overarching hypothesis and evidence to support the read-across is essential (Q)SARs can be helpful in providing some of this evidence.
- There is much guidance for read-across, and many frameworks exist that guide how to develop a readacross. Many of these frameworks are very complementary to each other.

Take Home Messages - 2

- Despite these development frameworks, acceptance of read-across remains a challenge. The main reason thought to be thwarting acceptance is characterising and addressing the uncertainties of the read-across prediction.
- Many frameworks exist that provide a structure for how to characterise these uncertainties. Research has been undertaken to explore to what extent NAM can be used to enhance the scientific confidence in readacross. Most approaches have been limited to a qualitative application of NAM. Other researchers have attempted to quantify the uncertainties in order to explore the performance of read-across and how and to what extent NAM is impactful in improving that performance.
- There are many tools that can be used in the development and assessment of read-across. A selection have been highlighted from those tools that are publicly available.

Take Home Messages - 3

- (Q)SARs and read-across are categorised as non-testing approaches and ordinarily form components of an IATA.
- There are different ways in which IATA can be constructed but there is a lot of commonality in the main steps.
- Increasingly IATA are being underpinned by mechanistic information such as captured within AOPs.
- For the skin sensitisation endpoint, an AOP is available and efforts have been made to explore to what extent more formalised prediction models can be developed that integrate different KE information. These sorts of prediction models are termed defined approaches (DA).
- OECD is undertaking work to explore to what extent performance based standards can be established for defined approaches to obviate formalised & lengthy validation exercises of specific DA.
- Examples of DA developed for skin sensitisation are highlighted to demonstrate the range of complexity that a DA might encompass.

Acknowledgements

- Colleagues at NCCT including Imran Shah, George Helman, Tony Williams, Ann Richard, Chris Grulke, Richard Judson
- Mark Cronin acknowledges the following financial support:
 - The European Community's Seventh Framework Program (FP7/2007-2013) COSMOS Project
 under grant agreement n° 266835 and from Cosmetics Europe
 - The European Community's 7th Framework Programme Innovative Medicines Initiative Joint Undertaking (IMI-JU) eTox Project (grant agreement n° 115002).
 - European Chemicals Agency (EChA) Service Contract No. ECHA/2008/20 /ECA/203.

Useful Links – (Q)SARs

QSAR resources (Models, Formats etc.)

- http://ihcp.jrc.ec.europa.eu/our_labs/predictive_toxicology/qsar_tools/QRF
- US EPA Chemistry Dashboard comptox.epa.gov/dashboard/
- QSARDB https://qsardb.org/
- Ochem https://ochem.eu/home/show.do
- Applicability Domain software tools
- http://ambit.sourceforge.net/download_ambitdiscovery.html
- http://oasis-Imc.org/

Useful Links – (Q)SARs and Read-across

Technical regulatory guidance

- http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf
- http://echa.europa.eu/support/grouping-of-substances-and-read-across
- <u>http://echa.europa.eu/practical-guides</u>
- <u>http://www.oecd.org/chemicalsafety/risk-assessment/validationofqsarmodels.htm</u>
- <u>http://www.oecd.org/chemicalsafety/risk-assessment/groupingofchemicalschemicalcategoriesandread-across.htm</u>
- ECHA. 2015. Read-across Assessment Framework (RAAF). ECHA-15-R-07-EN
- ECHA. 2017. RAAF ECHA-17-R-01-EN
- ECHA. 2017. RAAF considerations on multi-constituent substances and UVCBs ECHA-17-R-04-EN

Read-Across tools

- AMBIT http://cefic-Iri.org/toolbox/ambit/
- OECD QSAR Toolbox http://www.qsartoolbox.org/
- CBRA <u>https://www.fourches-laboratory.com/software</u>
- ToxRead <u>http://www.toxread.eu/download.php</u>
- AIM https://www.epa.gov/tsca-screening-tools/analog-identification-methodology-aim-tool
- Toxmatch <u>https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/toxmatch</u>
- Patlewicz G, et al. 2017. Navigating through the minefield of read-across tools. A review of in silico tools for grouping. Computational Toxicology 3: 1-18.

Read-Across literature

- Cronin MTD et al. 2013. Chemical Toxicity Prediction: Category Formation and Read-Across. Royal Society of Chemistry.
- Cronin MTD and Madden JC. 2010. In Silico Toxicology. Principles and Applications. Royal Society of Chemistry.
- Wu S et al. 2010. A framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments. Regul. Toxicol. Pharmacol. 56(1): 67-81.
- ECETOC. 2012. Technical Report 116 Category approaches, read-across, (Q)SAR available at http://www.ecetoc.org/technical-reports.
- Wang NC et al. Application of computational toxicological approaches in human health risk assessment. I. A tiered surrogate approach. 2012. Regul Toxicol Pharmacol. 63(1): 10-19.
- Patlewicz G et al. 2013a. Use of category approaches, read-across and (Q)SAR: general considerations. Regul. Toxicol. Pharmacol. 67(1): 1-12. doi: 10.1016/j.yrtph.2013.06.002.
- Patlewicz G, et al. 2013b. Workshop: use of "read-across" for chemical safety assessment under REACH. Regul. Toxicol. Pharmacol. 65(2): 226-228. doi: 10.1016/j.yrtph.2012.12.004.

Read-Across literature

- Low Y, et al. 2013. Integrative chemical-biological read-across approach for chemical hazard classification. Chem. Res. Toxicol. 26(8): 1199-1208.
- Blackburn K, Stuard SB. 2014. A framework to facilitate consistent characterization of read across uncertainty. Regul. Toxicol. Pharmacol. 68: 353-362.
- Patlewicz G, et al. 2014a Food for thought..Read-across approaches misconceptions, promises and challenges ahead. ALTEX 31: 387-396.
- Patlewicz G, et al. 2015. Building scientific confidence in the development and evaluation of read-across. Regul. Toxicol. Pharmacol. 72: 117-133.
- Schultz TW, et al. 2015. A strategy for structuring and reporting a read-across prediction of toxicity. Regul. Toxicol. Pharmacol. 72: 586-601.

Read-Across literature

- Ball N et al. 2016. Toward Good Read-Across Practice (GRAP) guidance. ALTEX. 33(2): 149-166.
- Zhu H et al. 2016. Supporting read-across using biological data. ALTEX. 33(2): 167-182.
- Schultz TW, Cronin MTD. 2017. Lessons learned from read-across case studies for repeated-dose toxicity. Regul Toxicol Pharmacol. 88:185-191. doi: 10.1016/j.yrtph.2017.06.011.
- Shah I et al. 2016. Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information. Regul. Toxicol. Pharmacol. 79: 12-24.
- Pradeep P, et al. 2017. A systematic evaluation of analogs and automated read-across prediction of estrogenicity: A case study using hindered phenols. Computational Toxicology, *in press*

AOPs, IATA & DA

- <u>http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm</u>
- <u>http://www.oecd.org/chemicalsafety/risk-assessment/iata-integrated-approaches-to-testing-and-assessment.htm</u>
- Ankley GT et al. 2010. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730-741
- Tollefsen KE et al. 2014. Applying Adverse Outcome Pathways (AOPs) to support of read across uncertainty. *Reg Toxicol Pharmacol* **2014**, 68, 353-362.
- Villeneuve DL et al. 2014. Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci. 142(2):312-20. doi: 10.1093/toxsci/kfu199.
- Edwards SW et al. 2016. Adverse Outcome Pathways-Organizing Toxicological Information to Improve Decision Making. J Pharmacol Exp Ther. 356(1): 170-181. doi: 10.1124/jpet.115.228239.

AOPs, IATA & DA

- OECD 2016a Guidance Document for the Use of Adverse Outcome Pathways in Developing IATA. STA No. 260, ENV/JM/MONO(2016)67
- OECD 2016b. OECD Guidance Document on the Reporting of Defined Approaches (DAs) to Be Used within IATA. STA No. 255, ENV/JM/MONO(2016)28
- OECD 2017 Guidance Document for the Use of Adverse Outcome Pathways in Developing Integrated Approaches to Testing and Assessment (IATA) Series on Testing and Assessment No. 260
- Wittwehr C et al. 2017. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicol Sci.155(2):326-336. doi: 10.1093/toxsci/kfw207.

Thank you!

Please contact the PETA International Science Consortium Ltd., for assistance in avoiding animal testing

pisc@piscltd.org.uk www.piscltd.org.uk

Webinars in this series

Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity	Dr. Grace Patlewicz, US EPA Prof. Mark Cronin, Liverpool John Moores University
Skin Irritation and Corrosion	Dr. Gertrude-Emilia Costin, Institute for In Vitro Sciences
25 January 2018, 4–5 pm GMT	Dr. Costanza Rovida, TEAM Mastery and CAAT-Europe
Skin Sensitisation	Dr. Susanne Kolle, BASF SE
1 February 2018, 4–5 pm GMT	Dr. Silvia Casati, EURL ECVAM
Eye Irritation and Corrosion	Dr. Kim Norman, Burt's Bees
15 February 2018, 4–5 pm GMT	Dr. Els Adriaens, Ghent University

Please contact the PETA International Science Consortium Ltd., for assistance in avoiding animal testing

The hub for product safety resources

pisc@piscltd.org.uk www.piscltd.org.uk

