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Outline 

• Conceptual basis and background:  Mechanistic modeling 

– Dosimetry as bridge between exposure and response 

– Modeling mechanisms of deposition and retention of 

inhaled particles in the respiratory tract  

• Context:  Applications in risk assessment 

– Data integration and inferences 

– Dose metrics to describe mode of action 

• Challenges and considerations for an approach to in vitro 

inhaled nanomaterials 

 

 

Disclaimer:   These views are those of the author and  
do not represent US EPA policy. 
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Mechanistic Modeling 

• Qualitative agreement with biological understanding of 

a process 

• Quantitative agreement with existing data describing 

the process 

• Validation through prediction of experimental data not 

used in model construction and novel to the 

construction process 

• Comparisons quantitatively characterized by 

differences in critical parameters 

• Consistent with contemporary toxicology:  

Comprehensive descriptions of pathogenesis and key 

events coupled with enhanced computational capacity 
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Motivation:  Dosimetry to  

“Mind the Gap” 

• External exposure ≠ Internal dose (i.e., tissue burden) 

• Incorporates current biological understanding and 
testing measures 

• Provides insights on important properties of different 
particles or fibers and their associated toxicity 

• Translates dose across various experimental designs to 
improve data integration 

• Addresses differences between test species and 
humans to refine inferences 

• Quantifies and explores properties systematically  and 
consistently! 
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Precedent:  Particle Model 

Applications 

• Data rich:  Particle dosimetry began with radionuclide efforts of 1940’s 

• National Ambient Air Quality Standard (NAAQS) for particulate 

matter (PM):  PM10 and PM2.5 criteria based on dosimetry models 

• Basis of dosimetric adjustment factor (DAF) used for interspecies 

extrapolation in development of inhalation reference concentration 

(RfC) risk estimates of air toxics 

• Strategy of “size-selective” exposure sampling:  “nasal” or “thoracic” 

or “respirable” samples 

• Evaluation criteria for refractory ceramic fibers (RCF) and man-made 

vitreous fibers (MMVF) 

• Targets pharmaceutical drug delivery 

• Now extending approaches to nanoparticles and in vitro systems 
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Anatomy,  Airflow,  Aerodynamics  
and Physics of Particle or Fiber Deposition 

• Aerodynamics dependent on particle size, distribution, and density 

• Material transport is dictated by dimensions of airway architecture and 

ventilation rate in each species 

– Inhalability 

– Breathing mode (nose or mouth) and ventilation activity pattern 

• “Slip correction” factors for objects (e.g., particles or fibers) transported 

in a fluid (i.e., air) 

• Deposition based on fundamental first principles of physics:  Laws of 

conservation of mass and momentum for both airflow and particles 

• Fiber orientation:  Based on statistics and deterministic description (e.g., 

parallel or perpendicular) to airflow  

 • Characterization of aerodynamics for fibers requires 

bivariate distribution (i.e., length and width) and 

density 
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Deposition:  Mechanisms and  

Dosimetry Modeling 

• Semi-empirical:  

Structure based on fit to 

data and theory 

• Species-specific 

architecture and airflows 

or activity patterns 

• Fundamental first 

principles of physics 

(Laws of conservation of 

mass and momentum 

for both airflow and 

fibers) 

• Equivalent aerodynamic 

fiber diameters derived 

based on dimensions and 

density for each 

deposition mechanism 

 

Retained burden = (Inhalability + Deposition) - Clearance  

Note:  Relative contribution of each mechanism 

is different in each region of respiratory tract 
7 



Airway Anatomy 

Illustrations courtesy of Dr. Jack R. Harkema, Professor of Comparative Pathology, Michigan State University.  

•  Nasal or URT 
•  Tracheobronchial 
•  Pulmonary 
•  Other (e.g., pleura?) 
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Clearance Mechanisms 

Vagal G. 

Mucociliary Escalator 

GI Tract 

AM-mediated Clearance 

 

Interstitium 

     (via Epithelium) 

Lymphat. Circulation 

Blood Circulation 
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Clearance Model:  Fibers   

• Based on MPPD Model 

• Compartmental 

structure to address 3 

major components 

1) Mucociliary 

clearance (M) 

2) Translocation (T) 

3) Dissolution (D) 

• Derived from  time-

course data for fiber 

burdens in each tissue  

Comprehensive Dosimetry Model for Libby Amphibole Asbestos:   Inhalability, Deposition, 
and Retention in the Respiratory Tract of F344 Rats and Humans 
A.M. Jarabek, O.T. Price, S.H. Gavett, and B. Asgharian.  Accepted for SOT 2015 in San Diego. 
(SOT Poster 615; Abstract No. 733). 10 



Multi-path Particle Dosimetry 

Model (MPPD) 

• Established in regulatory practice 

– Flexible and friendly GUI 

– Publicly available and supported by Applied Research Associates, Inc. 

• Updated deposition efficiencies verified with experimental data 

• Enhanced algorithms  

– Inhalability  

– More explicit mechanisms  

• Capable of stochastically predicting deposition and retained dose as a 
function of various physicochemical (size, distribution, density, shape, 
solubility) and physiological factors (age, ventilation rates, breathing 
mode and activity patterns) 

• Comprehensive range of particle sizes: 

– EPA to release fiber version 

– NIOSH contract has extended coverage to nanoparticles:  Version 3 soon 
to be released 
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Defining Dose:  Operational Dosimetry 

Modeling in Risk Assessment  

• “Dose” 

– Exposure versus internal amount (deposited or retained) 

– Defined best as causal or at least a metric best associated (correlated) 

with toxicity or key event / endpoint used to evaluate “dose-response” 

relationship 

• “Metric” 

– Measurement:  mass, surface area (SA), number (#) 

– Scale of metric should be same as observation or response 

endpoint (e.g., lung region versus local, specific cell type) 

• “Model” 

– Conceptual or quantitative description of important processes 

– Simulate different exposure scenarios and experimental designs 
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Risk Assessment:  Mode of Action (MOA) 
and Adverse Outcome Pathways (AOP) 

• The term “mode of action”  (MOA) is defined as a sequence of key 

events and processes, starting with interaction of an agent with a cell, 

proceeding through operational and anatomical changes, and resulting 

in cancer formation (US EPA, 2005). 

• A “key event” is an empirically observable precursor step that is itself a 

necessary element of the mode of action or is a biologically based 

marker for such an element.  

• An Adverse Outcome Pathway (AOP) is a conceptual framework that 

portrays existing knowledge concerning the linkage between a direct 

molecular initiating event and an adverse outcome, at a level of 

biological organization relevant to risk assessment. (Ankley et al., 

2010) 
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Sequence of Key Events 

Revised NAS Biomarker Scheme:  DNA Adducts in DNA-reactive Mode of Action 
(MOA) for Cancer (Jarabek et al., 2009) 
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Improving Measures of Dose  

• Mass administered 

• Media mass, surface area (SA) or number (#) 

concentration 

• Deposited mass, surface area or # 

• Deposited mass, SA or # / cell or cm2 

• Retained mass, SA or #  

• Internalized mass, SA or # per cell or cm2 

• Target site mass, SA or # 

Exposure 

Delivered  
Dose 

Cellular  
Dose 
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Application:  Aid Experimental 

Design and Impact on Inferences 

• Context for comparisons 

– Epidemiological studies:  Exposure 

– In vivo studies:  Inhalation or instilled 

– In vitro studies:  Applied to media or 
at cell level 

• Impact on inferences 

– Biases introduced based on 

• Exposure sampling methods  

• Analytical methods 

• Sample or tissue preparation 

– Poor correlation due to failure to 
account for determinants of dose 
and causative events of response 

 

Ambient Aerosol 

PM10  
sample 

Thoracic  
deposition 
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Selecting the Relevant Dose Metric 

• Appropriate selection depends on describing  the hypothesized mode of action 

– Corresponding to key event (e.g., cytotoxicity, inflammation, proliferation) 

– At the level of organization for observation (e.g., genomic, cellular, tissue) 

– Accounts for temporality of disease dimension (e.g., deposited for acute, retained 

for chronic endpoints)  

• Accounts for key characteristics of 

– Exposure 

• Concentration, duration 

• Periodic, ambient constant, workplace 

– Individual physiological parameters  

• Age-specific anatomy and ventilation rate 

• Activity pattern (e.g., rest, exertion) 

• Breathing mode (nasal, oronasal or mouth) 

– Particle properties – more dynamic and complicated than chemical only 

• Size, distribution 

• Density 
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Engineered Nanomaterial (ENM) 
Properties 

• Unique properties for their application also are likely essential to characterize to 

understand their potential toxicity 

• Consider dynamics of test system to understand spatial and temporal impacts 

• Critical properties to characterize:  

– Particle size and distribution 

– Density (*) 

– Agglomeration state 

– Shape 

– Crystal structure 

– Chemical composition (spatially averaged (bulk) and heterogenous) 

• Physiosorption or chemisorption of biomolecules (e.g., proteins) 

• Biochemically-induced changes in surface chemistry 

– Surface area 

– Surface chemistry 

– Surface charge (Zeta potential) 

– Porosity  
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Recommended Elements of 
Screening Strategy for ENM 
 

• ILSI Research Foundation / Risk Science Institute Nanomaterial Toxicity 

Screening Working Group report (Oberdorster et al., 2005) 

• Multidisciplinary testing strategy – setting characterization criteria would be 

premature  

• Collect sufficient information on potentially significant properties to enable 

quantitative interpretation of data; notably characterize critical physical 

metrics of 

– Mass 

– Surface area 

– Number 

• Context for screening of toxicity testing includes: 

– Human exposure characterization 

– Material following administration 

– Administered material 

– As-produced or supplied material 
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BVD* Deq 

(Species-Specific) 

I.T. or in vitro 

BVD “Dose” 

Tissue Prep 

Grid Prep 

Analytical Method 

Counting Rules 

I.T. or in Vitro 

“Dose” 

Predicted 

I.T. or in vitro 

BVD “Dose” 

Water 

Elutriation 

BVD* Dae 

(Species-Specific) 

Example:   Respirable Fraction (RF) 

Defined by fiber equivalent diameter (deq) 

or  

Particle aerodynamic diameter (dae) 

• Preparation of a respirable fiber sample 
is a critical and challenging first step of 
toxicological studies. The respirable 
fraction (RF) is defined as the amount of 
aerosol that will  penetrate to the  lower 
respiratory tract (LRT).  

• Water elutriation method assumes 
spherical particles and sedimentation, 
but impaction is most important 
deposition mechanism for fibers. 

• Consider operating specifications and 
dose definitions of in vitro system!  

Atmospheric 

BVD 

? 

? 
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Dosimetry in the Dish 

• Considerations of transport 

mechanisms for particles in 

an in vitro system shown to be 

a major factor in delivered 

dose to cells. 

• These considerations should 

be interfaced with predicted 

doses to respiratory tract of 

test species in question to 

best estimate dose range for 

realistic testing 

Hinderliter et al. (2010).  ISDD:  A computational model of particle sedimentation, diffusion, 

and target cell dosimetry for in vitro toxicity studies.   Part Fibre Toxicol. Nov 30;7(1):36. 
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Characterization by Bivariate Distribution versus β:  

Truncation of Exposure and Internal Fiber Burdens 

 

• Isopleth and bivariate 

distribution of resultant LRT 

fiber burden 

• Red line indicates truncation 

of fiber burdens by definition 

of fiber using aspect ratio (β) 
of 3:1 

 

• Exposure isopleth and 

bivariate distribution of 3.5 

mg/m3  (1-day with 0-hr 

recovery) 

• Red line indicates truncation of 

exposure distribution by 

definition of fiber using aspect 

ratio (β) of 3:1 
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Interspecies Extrapolation 
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Human Equivalent Concentration 

(HEC) Calculation 

• Illustrated for deposited but can be calculated for any other dose metric (SA, #) or 

normalizing factor (# epithelial cells, # alveolar macrophages) 

• Minute volume can be age-specific and incorporate a ventilatory activity pattern 

reflecting breathing mode (nasal, mouth, oronasal)  
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Predicted Interspecies Differences  

in Fiber Mass Deposition 

• TB (Left) and PU (right) 

deposition in rats (top) 

and humans (bottom) 

for different aspect 

ratios 
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Predicted ENM 
Mass Deposition Fraction in Humans 

• Difference in 

deposition due to 

shape is evident 

for a flat 

graphene ENM 

versus elongated 

nanotube of 

same dimension 

26 



Deposition Differences due to  

Dose Metrics 

• Number (left) and 

Surface area 

(right)  

• Aspect ratio = 3 

(top) versus 10  

(bottom) 

• Metric and aspect 

ratio determine 

– Magnitude of 

deposition 

– Degree of 

regional 

differences 

– Species 

differences 

(not shown) 
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Recommended ENM Measurements:  

Exposure 

Source:  Oberdorster et al. (2005).  Principles for characterizing the potential human health 

effects from exposure to nanomaterials:  Elements of a screening strategy.  Part Fibre Toxicol. 

2005 Oct 6;2:8. 
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Recommended ENM 
Characterization in Studies 

Source:  Oberdorster et al. (2005).  Principles for characterizing the potential human health 

effects from exposure to nanomaterials:  Elements of a screening strategy.  Part Fibre Toxicol. 

2005 Oct 6;2:8.   
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Advantages to Mechanistic  

Modeling of Nanomaterials 

• Builds on current understanding of biological and 

physicochemical mechanisms in mode of action (MOA) 

• Aids comparisons and translation of results 

– in vitro to in vivo context 

– Across fiber types 

– Between species 

• Facilitates comparisons of regional to local estimates of 
different fiber doses metrics with disease endpoints and 
measurements 

– Provides insights on MOA inferences and integration 

– Refines risk assessment predictions 
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