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wEPA Outline

¢ Conceptual basis and background: Mechanistic modeling

— Dosimetry as bridge between exposure and response

— Modeling mechanisms of deposition and retention of
inhaled particles in the respiratory tract

¢ Context: Applications in risk assessment

— Data integration and inferences
— Dose metrics to describe mode of action

® Challenges and considerations for an approach to in vitro
inhaled nanomaterials

Disclaimer: These views are those of the author and
do not represent US EPA policy.



Mechanistic Modeling
Qualitative agreement with biological understanding of
a process

Quantitative agreement with existing data describing
the process

Validation through prediction of experimental data not
used in model construction and novel to the
construction process

Comparisons quantitatively characterized by
differences in critical parameters

Consistent with contemporary toxicology:
Comprehensive descriptions of pathogenesis and key

events coupled with enhanced computational capacity 4



Motivation: Dosimetry to
“Mind the Gap”
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External exposure # Internal dose (i.e., tissue burden)

Incorporates current biological understanding and
testing measures

Provides insights on important properties of different
particles or fibers and their associated toxicity

Translates dose across various experimental designs to
improve data integration

Addresses differences between test species and
humans to refine inferences

Quantifies and explores properties systematically and
consistently!



o EDA Precedent: Particle Model
N ¥ Applications

)

Data rich: Particle dosimetry began with radionuclide efforts of 1940’s

National Ambient Air Quality Standard (NAAQS) for particulate
matter (PM): PMI10 and PM2.5 criteria based on dosimetry models

Basis of dosimetric adjustment factor (DAF) used for interspecies
extrapolation in development of inhalation reference concentration
(RfC) risk estimates of air toxics

Strategy of “‘size-selective’ exposure sampling: “nasal’ or ‘““thoracic”
or “respirable’” samples

Evaluation criteria for refractory ceramic fibers (RCF) and man-made
vitreous fibers (MMVF)

Targets pharmaceutical drug delivery

Now extending approaches to nanoparticles and in vitro systems



2 FOA Anatomy, Airflow, Aerodynamics
Wkl I\ and Physics of Particle or Fiber Deposition

Aerodynamics dependent on particle size, distribution, and density

Material transport is dictated by dimensions of airway architecture and
ventilation rate in each species

— Inhalability

— Breathing mode (nose or mouth) and ventilation activity pattern
“Slip correction” factors for objects (e.g., particles or fibers) transported
in a fluid (i.e., air)

Deposition based on fundamental first principles of physics: Laws of
conservation of mass and momentum for both airflow and particles

Fiber orientation: Based on statistics and deterministic description (e.g.,
parallel or perpendicular) to airflow

Characterization of aerodynamics for fibers requires
bivariate distribution (i.e.,length and width) and
density




o Deposition: Mechanisms and
»EPA Dosimetry Modeling

Semi-empirical:

Structure based on fit to

data and theory
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EPA Airway Anatomy

* Nasal or URT

e Tracheobronchial

* Pulmonary

e Other (e.g., pleura?)

Bronchus Enlargement
of Pulmonary
Centriacinus Acinus
Alveolus

Illustrations courtesy of Dr. Jack R. Harkema, Professor of Comparative Pathology, Michigan State University.



wEPA 3. Clearance Mechanisms
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Clearance Model: Fibers
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Comprehensive Dosimetry Model for Libby Amphibole Asbestos: Inhalability, Deposition,
and Retention in the Respiratory Tract of F344 Rats and Humans

A.M. Jarabek, O.T. Price, S.H. Gavett, and B. Asgharian. Accepted for SOT 2015 in San Diego.
(SOT Poster 615; Abstract No. 733).



o Multi-path Particle Dosimetry
»EPA Model (MPPD)

Established in regulatory practice (‘ MPPD

— Flexible and friendly GUI

— Publicly available and supported by Applied Research Associates, Inc.

Updated deposition efficiencies verified with experimental data
Enhanced algorithms

— Inhalability
— More explicit mechanisms

Capable of stochastically predicting deposition and retained dose as a
function of various physicochemical (size, distribution, density, shape,
solubility) and physiological factors (age, ventilation rates, breathing
mode and activity patterns)

Comprehensive range of particle sizes:

— EPA to release fiber version

— NIOSH contract has extended coverage to nanoparticles: Version 3 soon
to be released



o EDA Defining Dose: Operational Dosimetry
Modeling in Risk Assessment

“Dose”’

— Exposure versus internal amount (deposited or retained)

— Defined best as causal or at least a metric best associated (correlated)
with toxicity or key event | endpoint used to evaluate “dose-response™

relationship
“Metric”

— Measurement: mass, surface area (SA), number (#)

— Scale of metric should be same as observation or response
endpoint (e.g., lung region versus local, specific cell type)

“Model”

— Conceptual or quantitative description of important processes
— Simulate different exposure scenarios and experimental designs



n ° °
s PA Risk Assessment: Mode of Action (MOA)
\’E and Adverse Outcome Pathways (AOP)

® The term “mode of action” (MOA) is defined as a sequence of key

events and processes, starting with interaction of an agent with a cell,

proceeding through operational and anatomical changes, and resulting
in cancer formation (US EPA, 2005).

® A “key event” is an empirically observable precursor step that is itself a
necessary element of the mode of action or is a biologically based
marker for such an element.

® An Adverse Outcome Pathway (AOP) is a conceptual framework that
portrays existing knowledge concerning the linkage between a direct
molecular initiating event and an adverse outcome, at a level of

biological organization relevant to risk assessment. (Ankley et al.,
2010)



Sequence of Key Events

Revised NAS Biomarker Scheme: DNA Adducts in DNA-reactive Mode of Action
(MOA) for Cancer (Jarabek et al., 2009)
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wEPA Improving Measures of Dose

Mass administered

Exposure
Media mass, surface area (SA) or number (#)
concentration '

Delivered
Deposited mass, surface area or #

Dose
Deposited mass, SA or # / cell or cm? '
Retained mass, SA or #
Cellular

Internalized mass, SA or # per cell or cm? Dose

Target site mass, SA or #

Adapted from Teeguarden et al. (2007).



Application: Aid Experimental
Design and Impact on Inferences

SEPA

® Context for comparisons _
Ambient Aerosol
— Epidemiological studies: Exposure .
° [ ° ° ° 52 D l\Tml ,\
— In vivo studies: Inhalation or instilled N
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— In vitro studies: Applied to media or e
at cell level Z | N,
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Impact on inferences N L
— Biases introduced based on s e S s
* Exposure sampling methods : ”J} @ =

* Analytical methods
* Sample or tissue preparation e

— Poor correlation due to failure to Thoracic PM10
account for determinants of dose deposition sample

and causative events of response




Selecting the Relevant Dose Metric

Appropriate selection depends on describing the hypothesized mode of action

— Corresponding to key event (e.g., cytotoxicity, inflammation, proliferation)
— At the level of organization for observation (e.g., genomic, cellular, tissue)
— Accounts for temporality of disease dimension (e.g., deposited for acute, retained
for chronic endpoints)
Accounts for key characteristics of

— Exposure
 Concentration, duration
* Periodic, ambient constant, workplace
— Individual physiological parameters
* Age-specific anatomy and ventilation rate
* Activity pattern (e.g., rest, exertion)
* Breathing mode (nasal, oronasal or mouth)
— Particle properties — more dynamic and complicated than chemical only
* Size, distribution

* Density



Engineered Nanomaterial (ENM)
Properties

Unique properties for their application also are likely essential to characterize to
understand their potential toxicity

Consider dynamics of test system to understand spatial and temporal impacts
Critical properties to characterize:

— Particle size and distribution

— Density (*)

— Agglomeration state

— Shape

— Crystal structure

— Chemical composition (spatially averaged (bulk) and heterogenous)
* Physiosorption or chemisorption of biomolecules (e.g., proteins)
* Biochemically-induced changes in surface chemistry

— Surface area

— Surface chemistry

— Surface charge (Zeta potential)

— Porosity



S EPA Recommended Elements of
i Screening Strategy for ENM

ILSI Research Foundation / Risk Science Institute Nanomaterial Toxicity
Screening Working Group report (Oberdorster et al., 2005)

Multidisciplinary testing strategy — setting characterization criteria would be
premature

Collect sufficient information on potentially significant properties to enable
quantitative interpretation of data; notably characterize critical physical
metrics of

— Mass
— Surface area
— Number
Context for screening of toxicity testing includes:

— Human exposure characterization
— Material following administration

— Administered material

— As-produced or supplied material



* (Consider operating specifications and

Example: Respirable Fraction (RF)
Defined by fiber equivalent diameter (d.g)

A 4

Water
Elutriation

or
Particle aerodynamic diameter (d,)

Preparation of a respirable fiber sample
is a critical and challenging first step of
toxicological studies. The respirable |
fraction (RF) is defined as the amount of i____B_\_/_D___D_E’_S_G{___J
aerosol that will penetrate to the lower

Water elutriation method assumes

|.T. orinvitro < —=-=»

|.T. or in vitro :
BVD “Dose”

___________________

spherical particles and sedimentation,
but impaction is most important
deposition mechanism for fibers.

respiratory tract (LRT).

Tissue Prep
Grid Prep
Analytical Method
Counting Rules

dose definitions of in vitro system!

A 4

|.T. or in Vitro

“‘Dose” 20




EPA Dosimetry in the Dish

TRANSPORT PROCESSES
Diffusion Sedimentation
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- Considerations of transport
mechanisms for particles in
an in vitro system shown to be
a major factor in delivered
dose to cells.

- These considerations should
be interfaced with predicted
doses to respiratory tract of
test species in question to
best estimate dose range for
realistic testing

Hinderliter et al. (2010). ISDD: A computational model of particle sedimentation, diffusion,
and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. Nov 30;7(1):36.
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<EPA

Characterization by Bivariate Distribution versus 3:
Truncation of Exposure and Internal Fiber Burdens
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<EPA

Interspecies Extrapolation

Laboratory Animal
Dosimetry Model

Laboratory Animal
Exposure
(fibers or mg/m?)

Human Equivalent
Exposure
(fibers or mg/m?)

Human
Dosimetry Model

Laboratory Animal
Effective
Internal Dose Metric

11

Human
Effective
Internal Dose Metric
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o Human Equivalent Concentration
EPA (HEC) Calculation

¢ lllustrated for deposited but can be calculated for any other dose metric (SA, #) or
normalizing factor (# epithelial cells, # alveolar macrophages)

® Minute volume can be age-specific and incorporate a ventilatory activity pattern
reflecting breathing mode (nasal, mouth, oronasal)

deposited (depositio exposure minute\ (exposure
— X X X

mass fraction) \ concentraon) \volum time

Mass=(DF)x(C) x (V. )x(8t)

el -, R

24



\9’ EPA !’reflicted Interspeci.efs Differences
in Fiber Mass Deposition
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P e Predicted ENM
EPA Mass Deposition Fraction in Humans
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<EPA

Deposition Differences due to
Dose Metrics

Number (left) and
Surface area

(right)

Aspect ratio = 3
(top) versus 10
(bottom)

Metric and aspect
ratio determine

— Magnitude of
deposition

— Degree of
regional
differences

— Species
differences
(not shown)
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i Recommended ENM Measurements:
s EPA Exposure

Metric Meaxsurement
Aecommendation
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E- Theze maasurements are considered w be essantial.

[ Thesa measurements are considered w provide valable
imformation, but are not recommendsed 25 exental due D consirainis
associaied with complecity, cost and avaslabilicy.

Q) These measarements are comnsidered to provide vahable but nan.-
essantial ooposere informacion.
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Source: Oberdorster et al. (2005). Principles for characterizing the potential human health
effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol. 28
2005 Oct 6;2:8.



P Recommended ENM
wEPA Characterization in Studies
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Source: Oberdorster et al. (2005). Principles for characterizing the potential human health

effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol. 29
2005 Oct 6;2:8.



o EFDA Advantages to Mechanistic
\’ Modeling of Nanomaterials

® Builds on current understanding of biological and
physicochemical mechanisms in mode of action (MOA)

® Aids comparisons and translation of results

— in vitro to in vivo context
— Across fiber types
— Between species

® Facilitates comparisons of regional to local estimates of
different fiber doses metrics with disease endpoints and
measurements
— Provides insights on MOA inferences and integration

— Refines risk assessment predictions
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wEPA Thank you
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