

adolphe merkle institute OF FRIBOURG

Advanced in vitro lung models in nanotoxicology research – advantages and limitations

Barbara Rothen-Rutishauser

Chair BioNanomaterials Adolphe Merkle Institute University of Fribourg Marly, Switzerland

Toxicodynamic effects

NP binding, interaction and induction of toxic effects at the cellular level

Research and Industry need fast and low-cost screening systems

- Versatile, simple as possible and reproducible \bullet
- Realistic in simulating the human organ of igodolinterest
- Able to reproduce findings of *in vivo* studies
- Diseased (human) cells igodol

Alternative methods: **3**R (reduce, replace, refine)

Rothen-Rutishauser et al

Nanotoxicology (2010)

In vitro studies – Cell types

Primary cell cultures

- High phenotypic differentiation (2)
- Heterogeneous population of different cell types ⁽³⁾ (8)
- Difficult to reproduce (donor variation) 😣
- Finite life span in culture 8
- Lack of availability of normal human tissue 8

Continous cell line

- Transformed cell lines
- Infinite life span in culture 😊
- Homogeneous 😊
- Better reproducible 😊
- Senesence! 🙁
- Little phenotypic differentiation 😕
- ATCC (American Type Culture Collection)
- DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen)

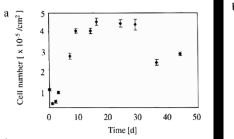
After receiving the cells make aliquots from one passage, store them in liquid nitrogen. During one project go back after 20-50 passages to the original passage.

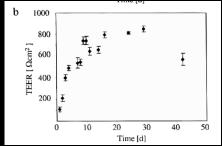
Use always the original cell lines

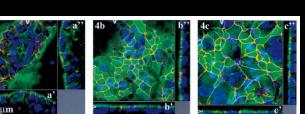
Design of an in vitro system to assess the inhalation toxicity of nanomaterials – Washington D.C. - 24/25.2.2015

Cell viability

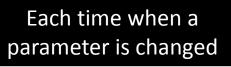
• Observation under the light microscope every day


Cell growth

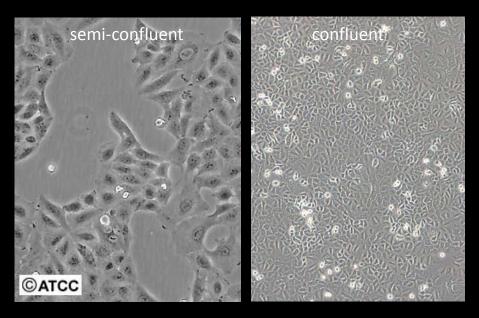

• Growth curve for dividing cells

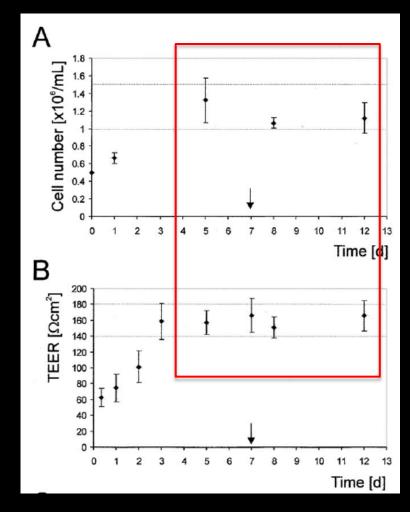

Cell morphology

Cell differentiation

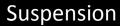

- Transepithelial electrical resistence, tightness (Epithelial cells)
- Expression of surface markers (Immune cells)

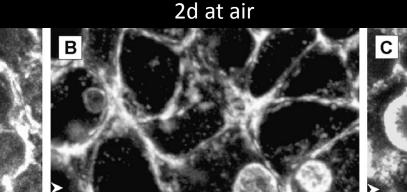
Characterization of Caco-2 cells (Rothen-Rutishauser et al. Pharm Res 2000)



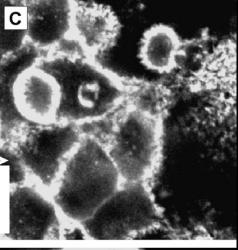


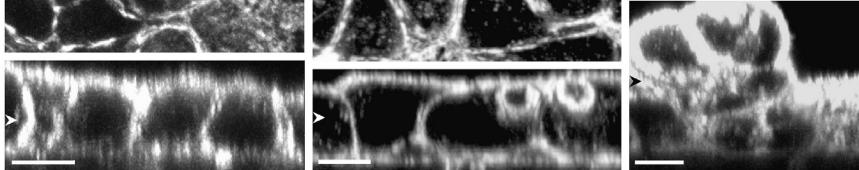
a Cell characerization – structure and function


A549 epithelial cells



Rothen-Rutishauser et al. Am J Respir Cell Mol Biol 2005


Cell characerization – structure and function



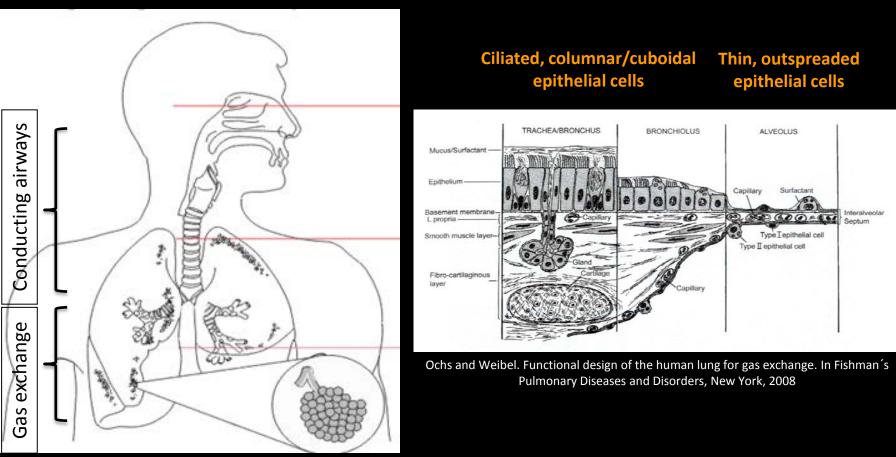
If one parameter is changing the characterisation has to be repeated

4d at air

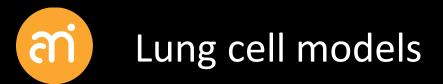
Blank et al. J Aerosol Med 2006

1) What is the **basic question**?

Cell-particle interactions Risk assessment of nanoparticles Cellular interplay of different cell types upon particle exposure

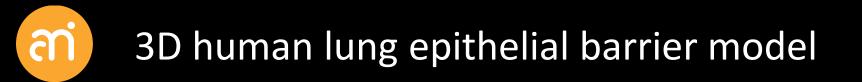

2) Which cell types?

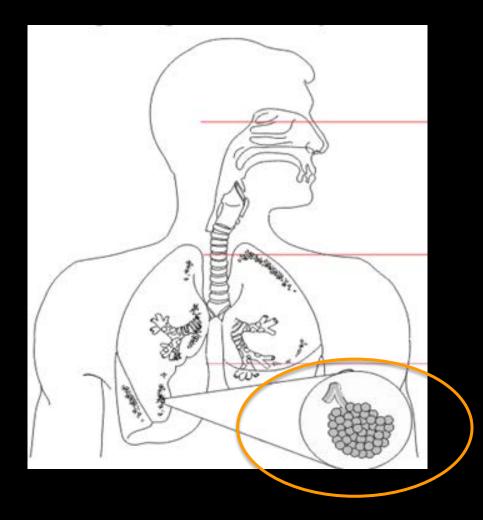
Epithelial and endothelial cells, macrophages, dendritic cells, fibroblasts....

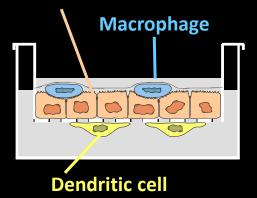

3) Which **equipment** is availabale?

Fully equipped cell culture lab (Biosafety hazard level 2)

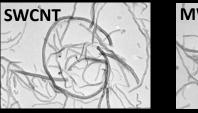
ai The human lung: airway – alveolar wall

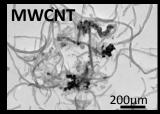



Dr. P. Straehl, BAFU, Abt. Luft-reinhaltung


Table 1: Human cell culture models mimicking the epithelial barriers found in the human lung						
Airway epithelial cells	References					
Calu-3 (ATCC HTB-55)	[172-179]					
16HBE14o- (can be obtained from D.C. <u>Gruenert</u>)	[117, 155, 162, 180, 181]					
BEAS-2B (ATCC CRL-9609)	[114, 115, 182-185]					
NuLi-1 (ATCC CRL-4011)	[116]					
Primary airway epithelial cells						
hBEpC	[98, 99, 186, 187]					
Alveolar epithelial cell lines						
A549 (ATCC CL-185): ATH phenotype	[105, 119, 143, 145, 183, 187-189]					
Immortalized human ATII cells with ATI phenotype	[128]					
NCI-H441 (ATCCHTB-174): ATII and Clara cell phenotype	[122-127]					
Primary alveolar epithelial cells						
hAEpC: ATH cells that differentiate in vitro into ATI-like morphology	[102-104]					
3D cultures						
3D aggregates of A549 cells	[131]					
Bilayer co-culture model: epithelial & endothelial cells	[190-193]					
Triple cell co-culture model: epithelial cells, macrophages, dendritic cells	[82, 137, 194, 195]					
Double, Triple and quadruple cell co-culture models: epithelial cells, endothelial cells, mast cells, macrophages	[140]					
Biomimetic microsystems						
Breathinglung-on-a-chip: epithelial & endothelial cells	[142]					
Perfused chip: epithelial & endothelial cells	[141]					
AT = alveolartype						

Jud et al. Swiss Med Wkly 2013


Epithelial cells (A549/16HBE14o-/primary cells)



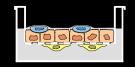
Rothen-Rutishauser et al. Am J Respir Cell Mol Biol 2005; Blank et al. Am J Respir Cell Mol Biol 2007 Rothen-Rutishauser et al. Review, Exp Opin Drug Metab Toxicol 2008 Lehmann et al. Eur J Pharm Biopharm 2010

Advantages of 3D models

20µg/mL

Wick et al. Tox Letters 2007

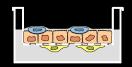
In vitro system



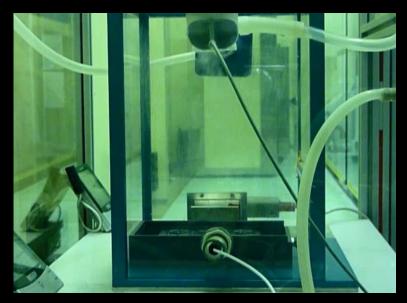
Nanofibre	SWCNTs	MWCNTs	SWCNTs	MWCNTs	SWCNTs	MWCNTs	SWCNTs	MWCNTs		
Cytotoxicity (LDH release)	-	-	-	-	-	-	-	-		
TNF-α ELISA	++	++	++	++	N/A	N/A	++ (Upper+Lower)	++ (Upper+Lower)		
IL-8 ELISA	N/A	N/A	N/A	N/A	++	++	++ (Upper) - (Lower)	++ (Upper) - (Lower)		
GSH content	-	++	-	++	++	++	++ (Upper+Lower)	++ (Upper+Lower)		
Clift et al. Tox Sci 2013										

Design of an in vitro system to assess the inhalation toxicity of nanomaterials – Washington D.C. - 24/25.2.2015

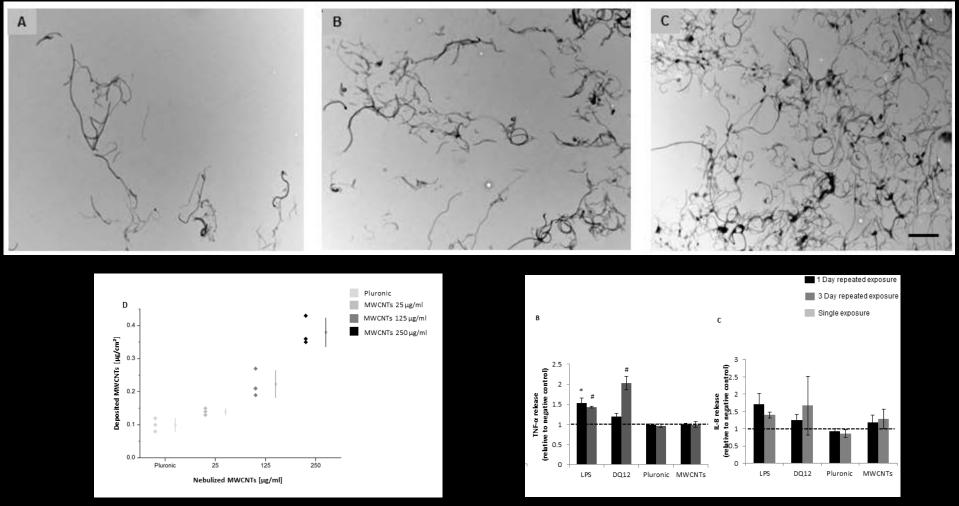
Air-liquid exposures of nanomaterials



Blank et al. J Aerosol Med 2006; Blank et al. Am J Respir Cell Mol Biol 2007



Air-liquid exposures of nanomaterials


Blank et al. J Aerosol Med 2006; Blank et al. Am J Respir Cell Mol Biol 2007

Lenz et al. Part Fibre Tox 2007

a Exposure to carbon nanotube-based aerosols

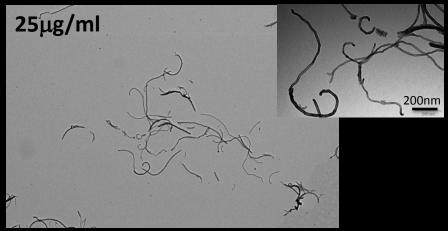
Multi-walled carbon nanotubes

Chortarea et al. Nanotoxicology 2015 (in press)

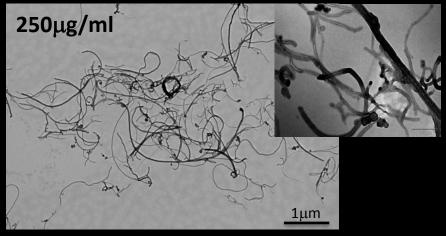
Design of an in vitro system to assess the inhalation toxicity of nanomaterials – Washington D.C. - 24/25.2.2015

Nanomaterials – realistic dose exposures?

Inhalation to MWCNT (5 mg/m³, 5 hours/day, 5 days/week) for 15 days

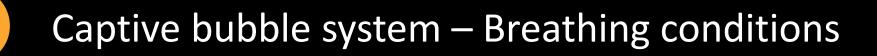

a

 \Rightarrow 31.2 μg MWCNT/ mouse lung $_{\text{Sargent et al. Part Fibre Toxicol 2014}}$

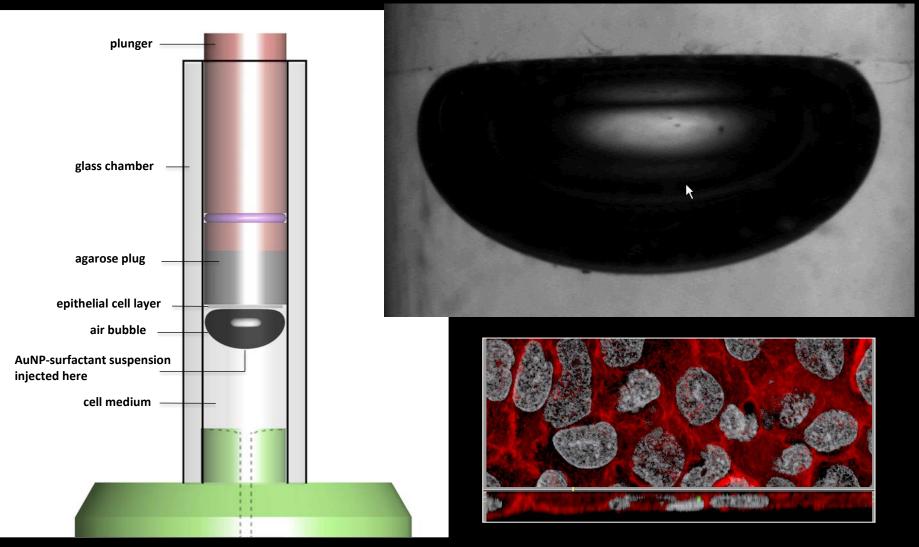

Surface of mouse lung 500 cm² Stone et al. Am J Respir Cell Mol Biol 1992

 $\Rightarrow 0.06 \ \mu g/cm^2$ (human occupational exposures)

Full working lifetime exposure to 1 mg/m³ aerosol concentration of CNT ranged from 12.4 to 46.5 μg/cm² alveolar mass retention Gangwal et al. Env Health Persp 2011

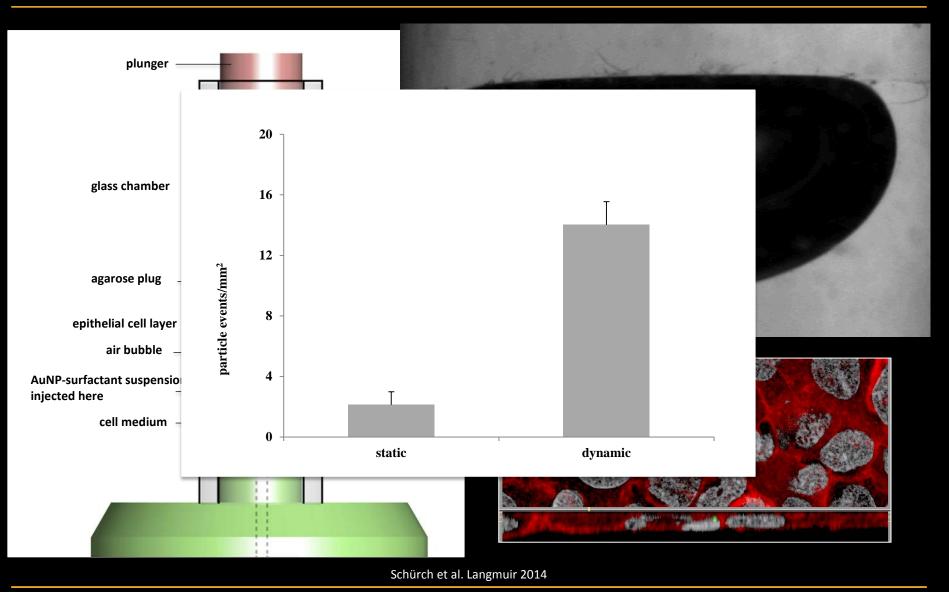


Deposition of 0.14 μ g/cm²



Deposition of 0.35 μ g/cm²

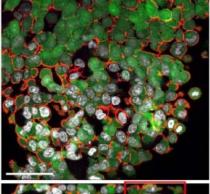
S. Chortarea, S. Beyeler


a

Schürch et al. Langmuir 2014

Captive bubble system – Breathing conditions

a


Design of an in vitro system to assess the inhalation toxicity of nanomaterials – Washington D.C. - 24/25.2.2015

Printing of lung tissue – a layer by layer a Manually

Printed

SCIENTIFIC REPORTS

OPEN

SUBJECT AREAS: TISSUE ENGINEERING EXTRACELLULAR MATRIX

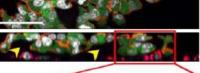
& Barbara Rothen-Rutishauser¹ Received 25 September 2014

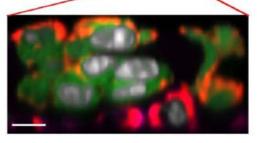
Accepted 12 December 2014 Published 22 January 2015

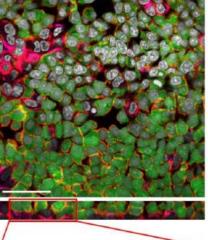
Correspondence and

requests for materials

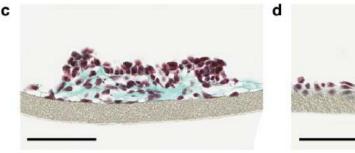
should be addressed to

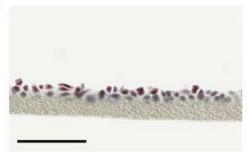

¹Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Respiratory Medicine, Bern University Hospital, CH3010 Bern, Switzerland.


Engineering an in vitro air

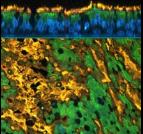

Lenke Horváth¹, Yuki Umehara¹, Corinne Jud^{1*}, Fabian Blank², Alk

by 3D bioprinting

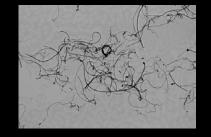

Intensive efforts in recent years to develop and commercialize in vi assessment have vielded new promising two- and three dimensional (realistic 3D in vitro alveolar model is not available yet. Here we repo air-blood tissue barrier analogue composed of an endothelial cell, b layer by using a bioprinting technology. In contrary to the manual technique enables automatized and reproducible creation of thinne which is required for an optimal air-blood tissue barrier. This biop tool to engineer an advanced 3D lung model for high-throughput sc efficacy testing.

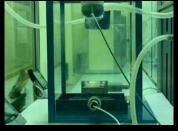


Horvath et al. Sci Report 2015

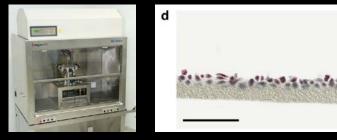


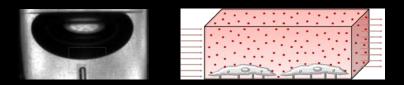
....where to go from here

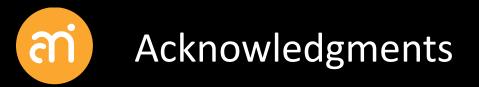

Lung cell models


- Co-culture models
- Diseased cells

Air-liquid exposures mimicking realistic inhalations of nanomaterials (relevant dose)






Standardization of protocols and validation of *in vitro* findings with *in vivo* data

More complex models including

- **breathing** patterns
- (blood) flow

BioNanomaterials group

AMI members

Adolphe Merkle Foundation

University of Fribourg

Collaboration partners:

- Prof. em. P. Gehr, University of Bern
- PD Dr. von Garnier and Dr. Blank, Bern University Hospital

