Skin Irritation and Corrosion Webinar 11 November 2014, 4pm GMT

Upcoming Webinars

Webinar 3: Serious Eye Damage and Eye Irritation December 4, 2014 11am ET, 4pm GMT Kim Norman, Institute for In Vitro Sciences João Barroso, EURL ECVAM

Webinar 4: January 2015: Skin sensitization
Webinar 5: February 2015: Mammalian acute toxicity (3T3 neutral red assay)
Webinar 6: March 2015: Ecotoxicity (fish embryo test)

Please contact the PETA International Science Consortium, Ltd., for assistance in avoiding animal testing

pisc@piscltd.org.uk

www.piscltd.org.uk

Skin Irritation/Corrosion Webinar

Gertrude-Emilia Costin, Ph.D., M.B.A. Institute for In Vitro Sciences, Inc. (IIVS) Gaithersburg, MD, USA http://www.iivs.org ecostin@iivs.org 01-301-947-6524

11 November 2014

Slide 1 of 50

Overview

- 1. The impact of test substances on human skin
- 2. The animal test system used for skin corrosion and irritation assessment
- 3. Evaluation of skin corrosion and irritation potential using *in vitro* assays
- 4. Conclusions *in vitro* assays validated for regulatory purposes (skin corrosion and irritation endpoints)

Slide 2 of 50

1. The impact of test substances on human skin

Slide 3 of 50

Skin corrosive/irritant

- Vast physical barrier against mechanical, chemical and microbial factors
- Immune network

PETA INTERNATIONAL

SCIENCE CONSORTIUM, LTD.

• Unique defense system against UV irradiation

CORROSION

- <u>Irreversible damage</u> of the skin following exposure to a test substance
- Visible necrosis through the epidermis and into dermis macroscopically typified by ulcers, bleeding, etc.

Native human skin

- Stratum corneum
- Stratum granulosum
- Stratum spinosum
- Basal layer of dividing keratinocytes

IRRITATION

- <u>Reversible damage</u> of the skin following exposure to a test substance
- Characterized macroscopically by erythema (redness) and oedema
- Damage to keratinocytes and dermal cells leads to inflammation
- Registration and labelling of chemicals
- Transport of chemicals
- Occupational safety
- Safety of cosmetics, toiletries and household products

http://www.survivingdisasters.info/emergency-first-aid/c/chemical-burn

Slide 4 of 50

2. The animal test system used for skin corrosion and irritation assessment

Slide 5 of 50

Acute dermal corrosion and irritation animal test (Draize) Brief overview and current regulatory status

- Test system: albino rabbits
- Assay endpoint: erythema and eschar formation
- oedema formation
- Assay control: untreated skin areas of the test animal
- ······
- Applicability: evaluation of the corrosion and irritation potential of test substances
- Limitations: The rabbit and human skin have different physiological properties and responses to test substances which may be more toxic to rabbits than to humans and vice versa.

The Draize rabbit test has been criticized for over-prediction of human skin irritation.

A debated ethical issue of the *in vivo* test concerns the animals' suffering and discomfort.

• <u>Regulatory status</u>: OECD Test Guideline 404 (TG 404) (updated 24 April 2002)

Draize: Typical protocol

- Animals:1-3 rabbits (sequential testing)
- Test substance: solid or liquid applied on 6 cm² skin surface
- Exposure: 3 minutes, 1 hr or 4 hrs (skin corrosion)

times 4 hrs (skin irritation)

Erythema and eschar formation	
No erythema	0
Very slight erythema (barely perceptible)	1
Well defined erythema	2
Moderate to severe erythema	3
Severe erythema (beef redness) to eschar formation preventing grading of erythema	4

Oedema formation			
No oedema	0		
Very slight oedema (barely perceptible)	1		
Slight oedema (edges or area well defined by definite raising)	2		
Moderate oedema (raised approximately 1 mm)	3		
Severe oedema (raised more than 1 mm and extending beyond area of exposure	4		

Draize J. H., Woodard G., Clavery, H.O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes, J. Pharmacol. Exp. Ther., **82**, 377-390 (1944).

3. Evaluation of skin corrosion and irritation potential using *in vitro* assays

* General considerations

Slide 8 of 50

Assessment of skin corrosion and irritation

- The impact of test substances on skin is evaluated progressively from <u>corrosion</u> and <u>irritation</u> potential to human compatibility
- Shortest tolerated exposures are typical for corrosive or severe irritants
- Various assays are available depending on the purpose of the testing

	In vitro assays validated for regulatory purposes	OECD TG
	SKIN CORROSION	
•	Transcutaneous Electrical Resistance Test (TER) Reconstructed Human Epidermis (RHE) Test Method Membrane Barrier Test Method (Corrositex®)	430 431 435
	SKIN IRRITATION	
•	RHE Test Method (SIT)	439

Hazard identification and <mark>labelling of chemicals and finished products</mark> Transportation of dangerous goods like industrial chemicals (neat or diluted) and their mixtures

Slide 9 of 50

In vitro three dimensional (3-D) reconstructed human epidermis (RHE) models validated for regulatory purposes

EpiDerm™ (EPI-200)

epiCS®

- 1. <u>General model criteria</u>
- Human keratinocytes are used for construction of the models
- Multiple layers of viable epithelial cells

Native human skin

EpiSkin™ (SM)

- 2. Functional model criteria
 - Tissues must be viable (QC from manufacturer, internal controls)
 - · Stratum corneum must form sufficient barrier
 - RHE models should exhibit long term reproducibility

SkinEthic™ RHE

LabCyte EPI-MODEL

Slide 10 of 50

3. Evaluation of skin corrosion and irritation potential using *in vitro* assays

* Assay specific considerations

In vitro skin corrosion

Slide 11 of 50

Transcutaneous Electrical Resistance Test (OECD 430) Brief overview and current regulatory status

- Test system: rat skin discs (dorso-lateral, 20 mm each, tested in triplicate from the same animal) - from humanely killed rats aged 28-30 days; Wistar-derived or comparable strain
- Assay endpoint: electrical impedance of the skin expressed as a transcutaneous electrical resistance (TER) value in kilo Ohms (kΩ) – measure of barrier function
- Assay controls: negative (sterile, deionized water); positive (10 M hydrochloric acid)
- Applicability: identification of non-corrosive and corrosive test substances and mixtures in accordance with the UN GHS (Globally Harmonized System)
- Limitations: does not allow the sub-categorization of corrosive substances and mixtures in accordance with the UN GHS

• <u>Regulatory status</u>: OECD Test Guideline 430 (TG 430) (updated 26 July 2013)

Slide 12 of 50

TER: Typical protocol

Slide 13 of 50

RHE Test Method (OECD TG 431)

Brief overview and current regulatory status

- Test system: 3-D RHE models [EpiDerm[™] (EPI-200), EpiSkin[™] (SM), SkinEthic[™] RHE, epiCS[®]]
- Assay endpoint: tissue viability (%) assessed by reduction of the vital dye MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) by viable cells
- Assay controls: negative (sterile, deionized water of NaCl solution 9 g/L); positive (8 N KOH or glacial acetic acid)

- Applicability: the results can be used for regulatory purposes for distinguishing corrosive from noncorrosive test substances
- Limitations: currently only the EpiSkin™ model could be used to support sub-categorization of corrosive test substances.
- <u>Regulatory status</u>: OECD Test Guideline 431 (TG 431) (updated 26 September 2014)

Slide 14 of 50

RHE: Typical protocol

Tissue Receipt

The tissues are incubated at standard culture conditions (at least 1 hr).

Duplicate tissues are

transferred into fresh

and

topically with control

and test substances for

3 min / 1 hr (4 hrs).

treated

media

Tissue Rinsing

After exposure, tissues are rinsed to remove the control and test substances.

MTT

The tissues are placed into wells containing unreduced MTT and incubated at standard culture conditions (3 hrs).

Isopropanol Extraction

The tissues are placed in isopropanol (2 hrs) to extract the reduced MTT. Extracted MTT is transferred to a 96-well plate.

Spectrophotometric Quantification

Optical density values (OD_{570}) are determined using a plate reader and used to calculate viability values (presented relative to negative control tissue values).

Slide 15 of 50

RHE: Prediction Models

EpiSkin™ (SM)	Viability measured after exposure time points (3, 60 and 240 minutes)	Prediction to be considered (UN GHS Category)
	< 35% after 3-minutes exposure	Corrosive: • Optional Sub-category 1A
	 ≥ 35% after 3-minutes exposure AND < 35% after 60-minutes exposure OR ≥ 35% after 60-minutes exposure AND < 35% after 240-minutes exposure 	Corrosive: • A combination of optional Sub- categories 1B and 1C
	≥ 35% after 240-minutes exposure	Non-corrosive

	Viability measured after exposure time points (3 and 60 minutes)	Prediction to be considered (UN GHS Category)
EpiDerm™ (EPI-200)	< 50% after 3-minutes exposure	Corrosive: • Optional Sub-category 1A
SkinEthic™ RHE epiCS®	≥ 50% after 3-minutes exposure AND < 15% after 60-minutes exposure	Corrosive: • A combination of optional Sub- categories 1B and 1C
	 ≥ 50% after 3-minutes exposure AND ≥ 15% after 60-minutes exposure 	Non-corrosive

Slide 16 of 50

Membrane Barrier Test Method (Corrositex®) (OECD 435)

Brief overview and current regulatory status

- Test system: artificial membrane designed to respond to corrosive substances in a manner similar to animal skin *in situ*
- Assay endpoint: the time (in minutes) required for a test substance to penetrate through the Corrositex Biobarrier Membrane and produce a color change in the Chemical Detection System (CDS)
- Assay controls: negative (10% citric acid, 5% propionic acid); positive (sodium hydroxide)
-
- Applicability: assigns UN Packing Group to corrosives or verifies if a test substance is non-corrosive
- Limitations: materials with a pH of ≥ 4.5 and ≤ 8.5 generally fail to qualify for testing based on the CDS used in the kit provided by In Vitro International
- <u>Regulatory status</u>: OECD Test Guideline 430 (TG 430) (updated 19 July 2006)

Slide 17 of 50

Corrositex®: Typical protocol

Qualification of the Test Substance

The test substance is added the CDS containing vial to determine if it qualifies for the assay based on a color change detected when the pH of the CDS drops below 4.5 or rises above 8.5. Categorization

The test substance is added to two tubes to determine the appropriate timetable for Packing Group Assignment as indicated by the manufacturer. A Category 1 test substance will be evaluated for up to 4 hrs; a Category 2 test substance will be evaluated for up to 1 hr.

Biobarrier

Biobarrier

Placement

The biobarrier matrix powder is solubilized and added to a membrane disc containing a porous cell membrane. The biobarrier membrane is placed onto a vial of CDS.

Break Through Observations

The test substance is added biobarrier onto four membranes: the CDS vial is continuously monitored for the first 10 min. If no color change occurs, the process is repeated three times until the remaining biobarrier membranes are treated with the test substance. The vials are observed until a color change (i.e., break through) occurs. The break through times are recorded.

Prediction Model Category I Cate

Mean Time to Produce a Change	Packing
in Chemical Detection System	Group
\leq 3 Minutes	Ι
> 3 Minutes - 1 Hour	II
> 1 - 4 Hours	III
>4 Hours	Not Applicable

Category II

Mean Time to Produce a Change in Chemical Detection System	Packing Group
\leq 3 Minutes	Ι
> 3 Minutes - 30 minutes	II
> 30 - 60 minutes	III
> 60 minutes	Not Applicable

3. Evaluation of skin corrosion and irritation potential using *in vitro* assays

* Assay specific considerations

In vitro skin irritation

Slide 19 of 50

RHE Test Method (SIT) (OECD TG 439) Brief overview and current regulatory status

- Test system: 3-D RHE models [EpiDerm[™] (EPI-200), EpiSkin[™] (SM), SkinEthic[™] RHE, LabCyte EPI-MODEL24]
- Assay endpoint: tissue viability (%) MTT
- Assay controls: negative (sterile, deionized water or Calcium and Magnesium Free DPBS); positive (5% SDS)
- Applicability: the results can be used for regulatory purposes to determine the skin irritancy of test substances either as a stand-alone replacement for *in vivo* skin irritation testing or as partial replacement test within a tiered testing strategy

.....

- Limitation: does not allow the classification of test substances to the optional UN GHS Category 3 (mild irritants)
- <u>Regulatory status</u>: OECD Test Guideline 439 (TG 439) (updated 26 July 2013)

Slide 20 of 50

RHE: Typical protocol

Tissue Receipt

Tissue Treatment

The tissues are incubated first for 1 hr and then over night (with media change) at standard culture conditions).

Triplicate tissues are treated topically with the control and test substances).

After exposure, tissues are rinsed and then placed in the incubator at standard culture conditions for two sequential post-treatment incubations (24 hrs and 18 hrs, respectively, with media change).

Post-treatment Incubation MTT Reduction

The tissues are placed into wells containing unreduced MTT solution and incubated at standard culture conditions (3 hrs).

Prediction Model

<i>In vitro</i> result	<i>In vivo</i> prediction	Prediction to be considered (UN GHS CATEGORY)
Mean tissue viability ≤ 50%	Irritant (I)	Category 2
Mean tissue viability > 50%	Non-irritant (NI)	No Category

Spectrophotometric Quantification

Optical density values (OD₅₇₀) are determined using a plate reader and used to calculate viability values (presented relative to negative control tissue values).

Isopropanol Extraction

The tissues are placed in isopropanol (2 hrs) to extract the reduced MTT. Extracted MTT is mixed and transferred to a 96-well plate.

4. Conclusions – *in vitro* assays validated for regulatory purposes (skin corrosion and irritation endpoints)

Slide 22 of 50

Assays designed for regulatory purposes

- Often rely on a single exposure time/dose which provides a predictive response
- Limited in their predictive scope (not useful for evaluating toxic effects outside of specific predictive range)
- Are frequently ingredients-oriented
- In the interest of both sound science and animal welfare, *in vivo* testing should not be undertaken until all available data relevant to the potential dermal corrosion and irritation of the test substance have been evaluated in a weight-of-the-evidence analysis.
- Tiered testing strategy can include:
 - search for existing studies in humans and/or laboratory animals
 - evidence of corrosion and irritation of structurally related substances or mixtures
 - data demonstrating strong acidity or alkalinity of the substance
 - results from validated and accepted *in vitro* or *ex vivo* tests

Slide 23 of 50

Tiered testing strategies for the assessment of skin corrosion and irritation potential

ChemicalWatch GLOBAL RISK & REGULATION NEWS

Slide 24 of 50

SKIN IRRITATION AND CORROSION Costanza Rovida

Costanza Rovida

CAAT Europe

REACH mastery

costanza.rovida@chimici.it

Universität

Konstanz

PETA INTERNATIONAL

mastery

Slide 25 of 50

Number of tests per year

www.echemportal.org

Slide 27 of 50

REPORT FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT

Seventh Report on the Statistics on the Number of Animals used for Experimental and other Scientific Purposes in the Member States of the European Union

Table 7.1 Number of animals used in toxicological and other safety evaluations

Type of tests versus species

Data of 2011*

		7.2.1. LD50,	0ther	(2.5 NO0									in other columns		
		2000	lethal methods	lethal clinical signs methods											
1.a. Mir	ice (Mus musculus)	220544	51356	43637	64	16846	30	16436	5271	1188	9931	742	0	98796	464841
1.b. Ra	ats (Rattus norvegicus)	8376	10870	65185	1490	64	0	42274	6445	20189	11278	61209	0	45200	272508
1.c. Gu	uinea-Pigs (Cavia porcellus)	773	1847	1546	88	15214	0	1630	110	0	0	254	0	5270	26732
1.d. Ha	amsters (Mesocricetus)	0	0	210	11	0	0	489	0	0	50	0	0	857	1617
1.e. Ot	ther Rodents (other Rodentia)	182	4	0	0	0	0	0	0	0	0	0	0	274	460
1.f. Ra	abbits (Oryctolagus cuniculus)	15	143	2947	3151	44	2080	634	0	2560	0	2978	0	8515	23067
1.g. Ca	ats (Felis catus)	0	0	34	0	0	0	12	0	0	0	0	0	285	331
1.h. Do	ogs (Canis familiaris)	0	123	2469	0	0	0	2785	0	0	0	95	0	1903	7375
1.i. Fe	errets (Mustela putorius furo)	0	0	0	0	0	0	0	0	0	0	0	0	52	52
1.j. Ot Ca	ther Carnivores (other amivore)	0	0	0	0	0	0	0	0	0	0	0	0	11	11
1.k. Ho	orses, donkeys and cross-														
bre	eds (Équidae)	0	0	33	0	0	0	0	0	60	0	0	0	148	241
1.I. Pig	gs (Sus)	0	39	807	45	0	0	729	0	22	0	86	0	1682	3410
1.m. Gc	oats (Capra)	0	0	0	0	0	0	0	0	0	0	0	0	8	8
1.n. Sh	heep (Ovis)	0	0	0	0	0	0	30	0	299	0	0	0	438	767
1.o. Ca	attle (Bos)	0	0	45	0	0	0	24	0	230	0	0	0	488	787
1.p. Pr	rosimians (Prosimia)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.g. Ne	ew World Monkeys (Ceboidea)	0	0	24	0	0	0	0	0	0	0	0	0	20	44
1.r. Ok	d World Monkeys														
(C)	ercopithecoidea)	0	0	877	0	0	0	1306	0	266	0	15	0	927	3391
1.s. Ap	pes (Hominoidea)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.t. Ot	ther Mammals (other														
Ma	ammalia)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.u. Qu	uail (Coturnix coturnix)	329	370	0	0	0	0	45	0	0	0	0	0	2350	3094
1.v. Ot	ther birds (other Aves)	423	182	4584	0	0	0	0	50	0	0	556	0	8492	14287
1.w. Re	epties (Reptilia)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.x. An	mphibians (Amphibia)	0	0	1660	0	0	0	0	0	500	0	0	516	19	2695
1.y. Fis	sh (Pisces)	34137	11641	11898	0	0	0	13730	0	16468	29	6381	38890	45909	179083
1.z. T0	IATC	264779	76575	135956	4849	32168	2110	001114	4 4 0 7 0	44 700	0.000		20402	224.844	1004075

(*) France reporting for 2010

REACH Regulation, EC 1907/2006 (Registration, Evaluation, Authorisation and restriction of Chemicals)

Slide 29 of 50

Negative results from *in vitro* tests are not accepted by regulators and must be always confirmed *in vivo*

Slide 30 of 50

ANNEX XI

GENERAL RULES FOR ADAPTATION OF THE STANDARD TESTING REGIME SET OUT IN ANNEXES VII TO X

1.4. In vitro methods

•••••

If the results obtained from the use of such in vitro methods do not indicate a certain dangerous property, the relevant test shall nevertheless be carried out at the appropriate tonnage level to confirm the negative result, unless testing is not required in accordance with Annexes VII to X or the other rules in this Annex.

Such confirmation may be waived, if the following conditions are met:

(1) results are derived from an in vitro method whose scientific validity has been established by a validation study, according to internationally agreed validation principles;

(2) results are adequate for the purpose of classification and labelling and/or risk assessment; and

(3) adequate and reliable documentation of the applied method is provided.

Evaluation under REACH

Progress Report 2010 Page 32

Skin irritation-corrosion

Annexes VIII-X requires an *in vivo* test to assess Skin irritation/corrosion. However, there are currently several *in vitro* methods available that can be used in a weight-of-evidence approach, to fully replace animal testing.

It is generally agreed that the EU B.46 (OECD 439) *in vitro* methods for Skin irritation represent a full replacement of the respective *in vivo* method (OECD 404) in a tiered testing strategy and in conjunction with *in vitro* skin corrosivity tests, if necessary. It should be noted that B.46 method does not address corrosivity; therefore, in case of positive result in a B46 test, a test addressing skin corrosion has to be performed.

It is recommended that the following testing strategy is followed when performing in vitro tests to assess skin-irritation and corrosion (see also Guidance on information requirements and chemical safety assessment Chapter R.7a: Endpoint specific guidance)

- Skin corrosion shall be tested first; in case of positive results, no further testing is necessary; the substance shall be classified accordingly.
- If the results of the skin corrosion test is negative, then a skin irritation study according to EU method B.46 shall be performed; if the result is positive, no further testing is necessary but classification of the substance.
- A negative result in the B.46 test does not need to be confirmed by additional testing.

Other official documents

Skin irritation/corrosion

JRC SCIENCE AND POLICY REPORTS

Alternative methods for regulatory toxicology – a state-of-the-art review

TITLE OF THE TEST GUIDELINES (YEAR OF APPROVAL)

Irritation

Reconstructed human epidermis tests, EU B.46, OECD 439 (in EU 2009 and in OECD 2010, revised in 2013 by OECD)

Corrosion

Transcutaneous electrical resistance test (TER), EU B.40, OECD 430, (2000, revised in 2013 by OECD)

Human skin model test (includes more than one protocol), EU B.40 bis, OECD 431, (2000, revised in 2013 by OECD)

In vitro membrane barrier test method, OECD 435 (2006)

Note: the latest version of the test guideline should always be used independent of whether it is published by EU or OECD.

http://echa.europa.eu/documents/10162/21650280/oecd_test_guidelines_skin_irritation_en.pdf

Report EUR 26797 EN http://publications.jrc.ec.europa.eu/ repository/handle/11111111/32662

Slide 33 of 50

OECD 404: Acute Dermal Irritation/Corrosion *in vivo* Description of the evaluation and testing strategy

- Step 1: Evaluation of existing human and animal data
- Step 2: Analysis of structure activity relationships (SAR)
- Step 3: Physicochemical properties and chemical reactivity
- Step 4: Dermal toxicity
- Step 5 and 6: Results from in vitro or ex vivo tests
- Step 7 and 8: In vivo test in rabbits

Slide 34 of 50

Integrated approach to testing and assessment

Slide 35 of 50

1. Evaluation of existing human and animal data

Human data:

a. Occupational exposureb. (consumer exposure)Old animal data:

- a. Impurities
- b. GLP

Slide 36 of 50

Gathering all existing information

Step 3: Physicochemical properties and chemical reactivity Step 4: Dermal toxicity (and other data)

http://toxnet.nlm.nih.gov/

Slide 37 of 50

Gathering all existing information

Slide 38 of 50

2: Analysis of structure activity relationships (SAR)

Slide 39 of 50

What do we need?

Slide 40 of 50

What do we need?

Skin irritation	Eye irritation		
Not irritant	Not irritant		
Not irritant	Category 2 - H319		
	Causes serious eye irritation		
Category 2 - H315	Category 2 - H319		
Causes skin irritation	Causes serious eye irritation		
Category 2 - H315	Category 1- H318		
Causes skin irritation Causes serious eye damage			
Category 1 - H314			
Causes severe skin burns and eye damage			
Category 1A / 1B / 1C (Packing group I, II, III)			

Slide 41 of 50

Skin Irritation - costs

Description	Guideline	Price (€)
In vivo skin irritation/corrosion on rabbits	OECD 404	1,800
	(Method B.4)	
In vitro Skin Corrosion - Transcutaneous Electrical	OECD 430	1,900
Resistance Test Method (TER)	(Method B.40)	
In vitro Skin Corrosion –	OECD 431	2,900
Human skin model test	(Method B.40 Bis)	
In vitro Skin Irritation - Reconstructed Human	OECD 439 (Method	2,100
Epidermis Test Method	B.46)	

*Prices come from some CROs in Italy and it should be noted that prices vary widely depending on multiple factors, including the exact service provided and geographical location. The prices listed are for a full GLP study as requested by regulators for a REACH dossier. It is likely that the price for *in vitro* testing may be significantly less for companies that have brought the *in vitro* methods in-house.

C copyright 2012 CW Research Ltd.

Example of strategy

Slide 43 of 50

Example of substance: Thioanisole

methyl phenyl sulphide EC 202-878-2 CAS 100-68-5

TOXNET Home > Multi-database Search Results

TOXNET SEARCH RESULTS	BROWSE TOXNET	AD	VANCED SEARCH
100-68-5	ALL DATABASES V	Search	
Search Term singular/plural	Records with all of the words	✓ Include Synonyms a Search	and CAS Numbers in
TOXNET databases use unique formats. Only o Click on "More Results" to see all records retrie	ne record from each of the selected resourceved for your search.	ces appears below. S	earch Details History My List
TOP RESULTS		DATABASE	ADD TO MY LIST
1. Co-treatment of single, binary and ternary mixture thioanisole in a biotrickling filter seeded with Lysinib Wan S; Li G; An T; Guo B J Hazard Mater. 2011, Feb 28; 186(2-3):1050-7. [Journal Citation 🛞	gas of ethanethiol, dimethyl disulfide and acillus sphaericus RG-1. of hazardous materials] [PubMed] PubMed	TOXLINE More Results (59)	Select Record
2. TECNAZENE 117-18-0		HSDB More Results (6)	Select Record
3. Thioanisole 100-68-5		ChemIDplus More Results (2)	Select Record
4. Methyl phenyl sulfide 100-68-5		HAZMAP More Results (1)	Select Record

Slide 44 of 50

Thioanisole and similar substances: Anisole

anisole

Jse of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.

nuracture, use &							
posure	Administrative Data	Data source	Materials and methods	Results and discussions			
BT assessment	Applicant's summary	and conclusion	1				
hysical and chemical roperties							
nvironmental fate and athways	Any other inform	ation on res	ults incl. tables				
cotoxicological Information	T 11 77 4 4 7 7 1						
xicological information	the test	corrosive respon	ise data for each animal at	each observation time up to	removal of each a		
Toxicological	Score at time point / Reversibility		r	Erythema	Edema		
information.001				Max. score: 4	Max. score: 2		
 Toxicokinetics, metabolism and distribution 	60 min	60 min			0/0/2		
	24 h			2/1/2	2/2/2		
Acute Toxicity	48 h			2/2/3	2/2/2		
Irritation / corrosion	72 h			1/2/2	0/0/0		
Skin irritation /	Average 24h, 48h, 7	Average 24h, 48h, 72h			1.3/1.3/1.3		
corrosion	Reversibility*)	Reversibility*)			c		
> Exp Key Skin	Average time (unit) for reversion			7 days	72 hours		
irritation / corrosion.001	*) Reversibility: c. = completely reversible; n.c. = not completely reversible; n. = not reversible						
> Eye irritation							
> Exp Key Eye irritation.001	Applicant's summa	ry and conclus	sion				
Sensitisation	Interpretation of	Interpretation of results					
Repeated dose toxicity							
Genetic toxicity		slightly irritating					
Toxicity to reproduction	Criteria used for	interpretatio	on of results				
uidance on safe use							

EUH066 (repeated exposure may cause skin dryness or cracking) Observed in an in vivo skin irritation study.

Slide 45 of 50

Thioanisole and QSAR Toolbox

Categorize	€ Collegory Definition → Data Gap Fill	ing FReport	Eval	uation of (Q)SARs for the Prediction of Skin Irritation/Corrosion Potential
Define Subschemeniae Combine Clustering Delate Delate M				
Seure Sonrareitourse Councile critereuriti Geiste nitiere vie				Physico-chemical exclusion rules
Crouping methods Bodeg probability (Bowin 7) Bodeg probability (Bowin 7) Bodeg utmate (Bowin 3) DNA brading by OASIS v. 1.1 DNA brading by OASIS v. 1.1 DNA brading by OECD DPRA Cytteine exploite deploit on DPRA Cytteine exploite deploit on	Structure	CH3		
DPAL years pestick depiction Estrogen Receptor Binding Hydrolysis half 4Fe (06, 149 R)(Hydrown) Hydrolysis half 4Fe (06, 149 R)(Hydrown) Hydrolysis half 4Fe (05, 149 R)(Hydrown) Hydrolysis half 4Fe (05, 149 R)(Hydrown) Hydrolysis half 4Fe (05, 149 R)(Hydrown) Hydrolysis half 4Fe (14, 149 R)(Hydrown) Hydrolysis half 4Fe (14, 149 R) Toinziation at pH = 1 Toinziation at pH = 2 Protens binding by CACIS 11.1 Protein binding by CACIS 11.1 Toric hazard dasification by Cramer (original) Toric hazard dasification by Cramer (with extensioni) Utimate bioding Endpoint Specific Acute aquatic toxicity dasification by CoCIAR Acute aquatic toxicity dasification by CCGAR Bioaccumulation - metubolim haff + et	Toxic hazard classification by Cramer (original) Toxic hazard classification by Cramer (with extensi Ultimate biodeg Endpoint Specific Acute aquatic toxicity classification by Verhaar Acute aquatic toxicity classification by COSAR Aquatic toxicity classification by ECOSAR Bioaccumulation – metabolism alerts Biodegradution fragments (BioWIN MIT) Carcinogenicity (genotox and nongenotox) alerts b DNA alerts for AMES, MN and CA by OASIS v1.1 Eye irritation/corrosion Inclusion rules by BIR in vitro mutagenicity (Ames test) alerts by ISS in vitro mutagenicity (Ames test) alerts by ISS	High (Class III) High (Class III) High (Class III) No Data Class 5 (Not possible to classify according to these rules) Basesuface narcotics Neutral Organics Aromatic-H Benzene Methyl [-CH3] Unsubstituted phenyl group (C6H5-) Fast Aromatic-H Methyl [-CH3] No alert found No alert found No alert found No alert found No alert found No alert found	Sponsor:	European Commission Directorate General Joint Research Centre Institute for Health and Consumer Protection European Chemicals Bureau
Boday addatin 1 Agriments (BoWRN MIT1) Cardrogority (grenotox and nongenotox) addets by 135 DKA alerts for AME3, NH and CA by OX515 v.1.1 Sye mitation/corrono Inclusion rules by BR error of the second seco	Horn Integrating (unconcent) which by ICO Kerafinocyte gene expression Oncologic Primary Classification Protein binding alerts for skin sensitization by OAS HTRE Expert System wer.1 - USEPA Skin irritation/corrosion Exclusion rules by BIR Skin irritation/corrosion Inclusion rules by BIR Elempinic Chemical elements Groups of elements Lipinski Rule Oasis Organic functional groups Organic functional groups (nested)	Not possible to classify according to these rules Not classified No alert found No alert found No alert found IUndefined/Group All Lipid Solubility < 0.01 g/rg Inclusion rules not met Group 16 - Sufur S Non-Metals Bioavailable Aryl Sufide Aryl Overlapping groups Sufude Aiphatic Carbon [CH] Aiphatic Carbon [CH]	Authors:	Emiel Rorije Etje Hulzebos National Institute of Public Health and Environment (RIVM) Bilthoven NL
1 sorted ascending(targets priority):	Grouping			September 2005

 $https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/information-sources/qsar-document-area/Evaluation_of_Skin_Irritation_QSARs.pdf$

Slide 46 of 50

Thioanisole: mild irritant?

Details retrieved from the ECHA database

Test substance: 10 µL undiluted

Duration of treatment:

Guideline B46: In Vitro Skin Irritation: Reconstructed Human Epidermis Model Test GLP Study

15 minutes followed by washing and incubation for 42 hours at 37°C Test animal: human

Species and strain, number of animals: not relevant

control animals: Other, negative control tissues treated with PBS;

positive control tissues treated with 5% SDS

Results: The relative mean tissue viability obtained after 15 minutes treatment compared to the negative controls was 11% (< 50%)

H315: Causes skin irritation

Slide 47 of 50

Thioanisole: eye irritant?

Details retrieved from the ECHA database

OECD Guideline 437: Bovine Corneal Opacity and Permeability (BCOP) GLP Study Test substance: 750 µL undiluted Duration of treatment: 10 minutes Test animal: Bovine Species and strain, number of animals: not relevant Results: IVS range from 2.9 and 4.8, average 3.9

BCOP result very close to non classification. This should trigger further investigation

However, this substance is already classified as skin irritant

H318: Causes eye irritation

Slide 48 of 50

Thioanisole: corrosive?

Details retrieved from the ECHA database

Guideline B40: In Vitro Skin corrosion: In vitro Skin Corrosion: Human Skin Model Test GLP Study Test substance: 50 µL undiluted Duration of treatment: 3 minutes and 1 hour Test animal: human Species and strain: not relevant number of animals: 4 tissues Results:

- 3 minutes: viability 50%
- 1 hour: viability 59%

Not Corrosive, Classification H315 confirmed

Slide 49 of 50

Conclusions

- Start from the regulatory framework
- There is no unique instructions and even simple tiered strategy should be tailored to the specific substance and the specific use
- Assessment of the substance should be performed globally, not endpoint by endpoint
- Interpretation of all available results, avoid just adding the conclusions from each single study report
- Look at cost and simplicity
- (Too much based on expert judgment)

Slide 50 of 50

Contact Information

Gertrude-Emilia Costin, Ph.D., M.B.A. Institute for In Vitro Sciences, Inc. (IIVS) Gaithersburg, MD, USA http://www.iivs.org ecostin@iivs.org 01-301-947-6524

Costanza Rovida, Ph.D. CAAT Europe REACH mastery costanza.rovida@chimici.it

